
TotalView

Reference Guide

April 2003

Version 6.2

Copyright © 1998–1999, 2003 by Etnus Inc. All rights reserved.
Copyright © 1999–2003 by Etnus LLC. All rights reserved.
Copyright © 1996–1998 by Dolphin Interconnect Solutions, Inc.
Copyright © 1993–1996 by BBN Systems and Technologies, a division of BBN Corporation.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Etnus
LLC (Etnus).

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

Etnus has prepared this manual for the exclusive use of its customers, personnel, and licensees. The information in
this manual is subject to change without notice, and should not be construed as a commitment by Etnus. Etnus
assumes no responsibility for any errors that appear in this document.

TotalView and Etnus are registered trademarks of Etnus LLC.

All other brand names are the trademarks of their respective holders.

Book Overview
part I – CLI Commands

1 CLI Command Summary... 3

2 CLI Commands .. 15

3 CLI Namespace Commands ... 129

4 TotalView Variables ... 161

5 Default Arena Widths.. 201

part II – Running TotalView

6 TotalView Command Syntax ... 207

7 TotalView Debugger Server (tvdsvr) Command Syntax............. 215

part III – Platforms and Operating Systems

8 Compilers and Platforms .. 225

9 Operating Systems ... 237

10 Architectures.. 251
Version 6.2 TotalView Reference Guide iii

Book Overview
iv TotalView Reference Guide Version 6.2

Contents
About This Book
How To Use This Book ... xi
Conventions ..xii
TotalView Documentation ..xiii
Contacting Us ...xiv

1 CLI Command Summary .. 3

2 CLI Commands
Command Overview ... 15
alias .. 19
capture ... 21
dactions.. 23
dassign.. 26
dattach ... 28
dbarrier ... 31
dbreak... 36
dcache .. 39
dcheckpoint.. 40
dcont .. 43
ddelete.. 45
ddetach .. 46
ddisable .. 47
ddown... 48
denable... 50
dflush.. 51
dfocus... 54
dgo.. 57
dgroups... 58
Version 6.2 TotalView Reference Guide v

Contents
dhalt.. 64
dhold... 65
dkill ... 66
dlappend... 67
dlist ... 68
dload... 71
dmstat... 73
dnext ... 75
dnexti ... 77
dout .. 79
dprint .. 81
dptsets .. 86
drerun ... 89
drestart ... 91
drun... 93
dset ... 96
dstatus .. 98
dstep... 100
dstepi .. 103
dunhold... 105
dunset ... 106
duntil... 107
dup.. 110
dwait ... 112
dwatch .. 113
dwhat .. 117
dwhere .. 121
dworker ... 123
exit .. 124
help ... 125
quit.. 126
stty .. 127
unalias... 128

3 CLI Namespace Commands
Command Overview ..129
actionpoint ... 131
dec2hex .. 133
errorCodes .. 134
expr ... 136
vi TotalView Reference Guide Version 6.2

Contents
focus_groups.. 138
focus_processes... 139
focus_threads... 140
group .. 141
hex2dec .. 143
image .. 144
process ... 147
respond .. 150
scope .. 151
source_process_startup... 152
symbol .. 153
thread ... 154
type... 156
type_transformation... 159

4 TotalView Variables
Top-Level (::) Namespace ... 161
TV:: Namespace .. 168
TV::GUI:: Namespace .. 193

5 Default Arena Widths ... 201

6 TotalView Command Syntax
Syntax... 207
Options ... 208

7 TotalView Debugger Server (tvdsvr) Command Syntax
The tvdsvr Command and Its Options ... 215
Replacement Characters .. 219

8 Compilers and Platforms
Compiling with Debugging Symbols... 225

HP Alpha Running Linux ... 226
HP Tru64 UNIX .. 226
HP-UX ... 227
IBM AIX on RS/6000 Systems ... 227
Linux Running on an x86 Platform .. 228
SGI IRIX-MIPS Systems ... 229
SunOS 5 on SPARC ... 230

Using Exception Data on HP Tru64 UNIX ... 231
Linking with the dbfork Library ... 231
Version 6.2 TotalView Reference Guide vii

Contents
Linking with dbfork and HP Tru64 UNIX ... 232
Linking with HP-UX ...232
dbfork on IBM AIX on RS/6000 Systems ...233

Linking C++ Programs with dbfork ...233
Linux ..234
SGI IRIX6-MIPS ..234
SunOS 5 SPARC ..235

9 Operating Systems
Supported Operating Systems ..237
Mounting the /proc File System ..238

Mounting /proc HP Tru64 UNIX and SunOS 5239
Mounting proc SGI IRIX ...239

Swap Space ...239
Swap Space on HP Tru64 UNIX ...240
Swap Space on HP HP-UX ..240

Maximum Data Size ...240
Swap Space on IBM AIX ..241
Swap Space on Linux ..242
Swap Space on SGI IRIX ..242
Swap Space on SunOS 5 ...242

Shared Libraries ..243
Changing Linkage Table Entries and LD_BIND_NOW244
Using Shared Libraries on HP-UX ...245

Debugging Dynamically Loaded Libraries ...245
Known Limitations ..248

Remapping Keys ..248
Expression System ..248

Expression System on HP Alpha Tru64 UNIX248
Expression System on IBM AIX ...249
Expression System on SGI IRIX ...249

10 Architectures
HP Alpha ...251

Alpha General Registers.. 252
Alpha Floating-Point Registers ..253
Alpha FPCR Register ..253

HP PA-RISC ...254
PA-RISC General Registers ..254
PA-RISC Process Status Word ...255
viii TotalView Reference Guide Version 6.2

Contents
PA-RISC Floating-Point Registers ... 256
PA-RISC Floating-Point Format .. 258

IBM Power ... 258
Power General Registers ... 258
Power MSR Register .. 259
Power Floating-Point Registers ... 260
Power FPSCR Register ... 260

Using the Power FPSCR Register .. 262
Intel-x86 ... 262

Intel-x86 General Registers ... 263
Intel-x86 Floating-Point Registers .. 264
Intel-x86 FPCR Register .. 265

Using the Intel-x86 FPCR Register ... 265
Intel-x86 FPSR Register ... 266
Intel-x86 MXSCR Register ... 266

SGI MIPS ... 267
MIPS General Registers ... 268
MIPS SR Register ... 269
MIPS Floating-Point Registers .. 270
MIPS FCSR Register .. 271

Using the MIPS FCSR Register .. 272
MIPS Delay Slot Instructions .. 272

Sun SPARC .. 273
SPARC General Registers .. 273
SPARC PSR Register .. 274
SPARC Floating-Point Registers .. 275
SPARC FPSR Register .. 275

Using the SPARC FPSR Register ... 276

Index... 279
Version 6.2 TotalView Reference Guide ix

Contents
x TotalView Reference Guide Version 6.2

About This Book
This document is the reference guide for the Etnus TotalView® debugger. Unlike the
TotalView Users Guide which presented GUI and CLI information together, the chapters
in this book are either devoted to one interface or contain information that pertains to
both.

How To Use This Book

The information in this book is in three parts.

g CLI Commands

Here you will find a description of all of the CLI’s commands, the variables that
you can set using the CLI, and other CLI-related information.

g Running TotalView

TotalView and the TotalView Debugger Server can accept a great many command-
line options. These options are described here.

g Platforms and Operating Systems

While the way in which you use TotalView is the same from system to system and
from environment to environment, these systems and environments place some
constraints on what you must do and require that you compile programs differ-
ently on the various UNIX platforms. These differences are described here.
Version 6.2 TotalView Reference Guide xi

About This Book
Conventions

The following table describes the conventions used in this book:

TABLE I: Book Conventions

Convention Meaning
[] Brackets are used when describing parts of a command that are

optional.
arguments Within a command description, text in italic represent information

you type. Elsewhere, italic is used for emphasis. You won’t have
any problems distinguishing between the uses.

Dark text Within a command description, dark text represent key words or
options that you must type exactly as displayed. Elsewhere, it rep-
resents words that are used in a programmatic way rather than
their normal way.

Example text In program listings, this indicates that you are seeing a program or
something you’d type in response to a shell or CLI prompt. If this
text is in bold, it’s indicating that what you’re seeing is what you’ll
be typing. Bolding this kind of text is done only when it’s impor-
tant. You’ll usually be able to differentiate what you type from
what the system prints.
This graphic symbol indicates that a feature is only available in the
GUI. If you see it on the first line of a section, all the information in
the section is just for GUI users. When it is next to a paragraph, it
tells you that just the sentence or two being discussed applies to
the GUI.
The primary emphasis of this book is on the GUI. It shows the win-
dows and dialog boxes that you use. This symbol tells you how to
do the same thing using the CLI.

CLI EQUIVALENT:
xii TotalView Reference Guide Version 6.2

About This Book
TotalView Documentation

The following table describes other TotalView documentation:

TABLE II: TotalView Documentation

Title Contents
Online
Help HTML PDF Print

TotalView Users Guide Describes how to use the TotalView
GUI and the CLI

✔ ✔ ✔

TotalView QuickView Presents what you need to know to
get started using TotalView

✔

Creating Type
Transformations

Tells how to create Tcl CLI macros
that change the way structures and
STL containers appeaer

✔ ✔

TotalView Graphic User
Interface Command
Reference

Defines all TotalView GUI
commands

✔ ✔ ✔

TotalView Installation
Guide

Contains the procedures to install
TotalView and the FLEXlmlicense
manager

✔ ✔ ✔

TotalView New Features Tells you about new features added
to TotalView

✔ ✔ ✔

TotalView Release Notes Lists known bugs and other
information related to the current
release

✔ ✔ ✔

IBM Considerations Briefly describes things you should
know when run on IBM RS6000
machines

✔ ✔ ✔

Linux Considerations Briefly describes things you should
know when running on Linux
platforms

✔ ✔ ✔

Patching Platforms Describes how to apply vendor
supplied patches to operating
systems and compilers

✔ ✔ ✔

Platforms and System
Requirements

Lists the platforms upon which
TotalView runs and the compilers it
supports

✔ ✔ ✔
Version 6.2 TotalView Reference Guide xiii

About This Book
Contacting Us

Please contact us if you have problems installing TotalView, questions that are not
answered in the product documentation or on our Web site, or suggestions for new
features or improvements.

Our Internet E-Mail address for support issues is support@etnus.com
For documentation issues, the address is: documentation@etnus.com
Call: 1-800-856-3766 in the United States
(+1) 508-652-7700 worldwide

If you are reporting a problem, please include the following information:

g The version of TotalView and the platform on which you are running TotalView

g An example that illustrates the problem

g A record of the sequence of events that led to the problem
xiv TotalView Reference Guide Version 6.2

Part I: CLI Commands
This part of the TotalView Reference Guide contains five chapters describing the CLI.
While Chapter 4 describes all CLI variables, these variables include those used to set GUI
behaviors.

Chapter 1: CLI Command Summary
There are a great number of CLI commands. This chapter summarizes
them for you.

Chapter 2: CLI Commands
Here you will find a detailed treatment of all CLI commands that are
found in the CLI’s unqualified (top-level) namespace. These are the
commands that you will use day-in and day-out and those that are
most often used interactively.

Chapter 3: CLI Namespace Commands
This chapter contains descriptions of commands found in the TV::
namespace. These commands are seldom used interactively as they
are most often used in scripts.

Chapter 4: TotalView Variables
TotalView places variables in three namespaces: unqualified (top-
level), TV:: and TV::GUI. For the most part, you set these variables to
alter TotalView behaviors.

Chapter 5: Default Arena Widths
Many of the commands described in Chapter 2 have a default arena.
That is, the scope of their action is across a set of groups, processes,
and threads unless you tell the command otherwise. Here you’ll find
a listing of all these default arenas.
Version 6.2 TotalView Reference Guide 1

2 TotalView Reference Guide Version 6.2

Version 6.2
Chapter 1
CLI Command Summary
This chapter contains a summary of all TotalView® CLI commands. Type Transformation
macros and convenience routines are not listed here.

actionpoint
Gets and sets action point properties

TV::actionpoint action [object-id] [other-args]

alias
Creates a new user-defined pseudonym for a command

alias alias-name defn-body

Views previously defined aliases

alias [alias-name]

capture
Returns a command’s output as a string

capture [–out | –err | –both] [–f filename] command

dactions
Displays information about action points

dactions [ap-id-list] [–at source-loc]
[–enabled | –disabled]

Saves action points to a file

dactions –save [filename]

Loads previously saved action points

dactions –load [filename]
TotalView Reference Guide 3

1
CLI Command Summary

dassign
dassign
Changes the value of a scalar variable

dassign target value

dattach
Brings currently executing processes under CLI control

dattach [–g gid] [–r hname]
[–ask_attach_parallel | –no_attach_parallel]
[–c corefile-name]
[–e] fname pid-list

dbarrier
Creates a barrier breakpoint at a source location

dbarrier source-loc [–stop_when hit { group | process | none }]
[–stop_when_done { group | process | none }]

Creates a barrier breakpoint at an address

dbarrier –address addr
[–stop_when_hit { group | process | none }]
[–stop_when_done { group | process | none }]

dbreak
Creates a breakpoint at a source location

dbreak source-loc [–p | –g | –t] [[–l lang] –e expr]

Creates a breakpoint at an address

dbreak –address addr [–p | –g | –t] [[–l lang] –e expr]

dcache
Clears the remote library cache

dcache

dcheckpoint
Creates a checkpoint image of processes (SGI only)

dcheckpoint [after_checkpointing] [–by process_set] [–no_park]
[–ask_attach_parallel | –no_attach_parallel]
[–no_preserve_ids] [–force] checkpoint-name
4 TotalView Reference Guide Version 6.2

CLI Command Summary

dcont
dcont
Continues execution and waits for execution to stop

dcont

ddelete
Deletes some action points

 ddelete action-point-list

Deletes all action points

ddelete –a

ddetach
Detaches from the processes

ddetach

ddisable
Disables some action points

ddisable action-point-list

Disables all action points

ddisable –a

ddown
Moves down the call stack

ddown [num-levels]

dec2hex
Converts a decimal number into hexadecimal

TV::dec2hex number

denable
Enables some action points

denable action-point-list

Enables all disabled action points in the current focus

denable –a
Version 6.2 TotalView Reference Guide 5

1
CLI Command Summary

dflush
dflush
Removes the top-most suspended dprint

dflush

Removes all suspended dprint computations

dflush –all

Removes dprint computations preceding and including a suspended evaluation ID

dflush susp-eval-id

dfocus
Changes the target of future CLI commands to this P/T set

dfocus p/t-set

Executes a command in this P/T set

dfocus p/t-set command

dgo
Resumes execution of target processes

dgo

dgroups
Adds members to thread and process groups

dgroups –add [–g gid] [id-list]

Deletes groups

dgroups –delete [–g gid]

Intersects a group with a list of processes and threads

dgroups –intersect [–g gid] [id-list]

Prints process and thread group information

dgroups [–list] [pattern]

Creates a new thread or process group

dgroups –new [thread_or_process] [–g gid] [id-list]

Removes members for thread or process groups

dgroups –remove [–g gid] [id-list]
6 TotalView Reference Guide Version 6.2

CLI Command Summary

dhalt
dhalt
Suspends execution of processes

dhalt

dhold
Holds processes

dhold –process

Holds threads

dhold –thread

dkill
Terminates execution of target processes

dkill

dlappend
Appends list elements to a TotalView variable

dlappend variable-name value [...]

dlist
Displays code relative to the current list location

dlist [–n num-lines]

Displays code relative to a named location

dlist source-loc [–n num-lines]

Displays code relative to the current execution location

dlist –e [–n num-lines]

dload
Loads debugging information

dload [–g gid] [–r hname] [–e] executable

dmstat
Displays memory use information

dmstat
Version 6.2 TotalView Reference Guide 7

1
CLI Command Summary

dnext
dnext
Steps source lines, stepping over subroutines

dnext [num-steps]

dnexti
Steps machine instructions, stepping over subroutines

dnexti [num-steps]

dout
Runs out from current subroutine

dout [frame-count]

dprint
Prints the value of a variable or expression

dprint variable_or_expression

dptsets
Shows status of processes and threads in an array of P/T expressions

dptsets [ptset_array] ...

drerun
Restarts processes

drerun [cmd_arguments] [< infile]
[> [>][&] outfile]
[2> [>] errfile]

drestart
Restarts a checkpoint (SGI only)

drestart [process-state] [–no_unpark] [–g gid] [–r host]
[–ask_attach_parallel | –no_attach_parallel]
[–no_preserve_ids] checkpoint-name

drun
Starts or restarts processes

drun [cmd_arguments] [< infile]
[> [>][&] outfile]
[2> [>] errfile]
8 TotalView Reference Guide Version 6.2

CLI Command Summary

dset
dset
Creates or changes a CLI state variable

dset [–new] debugger-var value

Views current CLI state variables

dset [debugger-var]

Sets the default for a CLI state variable

dset -set_as_default debugger-var value

dstatus
Shows current status of processes and threads

dstatus

dstep
Steps lines, stepping into subfunctions

dstep [num-steps]

dstepi
Steps machine instructions, stepping into subfunctions

dstepi [num-steps]

dunhold
Releases a process

dunhold –process

Releases a thread

dunhold –thread

dunset
Restores a CLI variable to its default value

dunset debugger-var

Restores all CLI variables to their default values

dunset –all
Version 6.2 TotalView Reference Guide 9

1
CLI Command Summary

duntil
duntil
Runs to a line

duntil line-number

Runs to an address

duntil –address addr

Runs into a function

duntil proc-name

dup
Moves up the call stack

dup [num-levels]

dwait
Blocks command input until the target processes stop

dwait

dwatch
Defines a watchpoint for a variable

dwatch variable [–length byte-count] [–p | –g | –t]
[[–l lang] –e expr] [–t type]

Defines a watchpoint for an address

dwatch –address addr –length byte-count [–p | –g | –t]
[[–l lang] –e expr] [–t type]

dwhat
Determines what a name refers to

dwhat symbol-name

dwhere
Displays locations in the call stack

dwhere [num-levels] [–a]

dworker
Adds or removes a thread from a workers group

dworker { number | boolean }
10 TotalView Reference Guide Version 6.2

CLI Command Summary

errorCodes
errorCodes
Returns a list of all error code tags

TV::errorCodes

Returns or raises error information

TV::errorCodes number_or_tag [–raise [message]]

expr
Manipulates values created by dprint –nowait

TV::expr action [susp-eval-id] [other-args]

exit
Terminates the debugging session

exit [–force]

focus_groups
Returns a list of groups in the current focus

TV::focus_groups

focus_processes
Returns a list of processes in the current focus

TV::focus_processes [–all | –group | –process | –thread]

focus_threads
Returns a list of threads in the current focus

TV::focus_threads [–all | –group | –process | –thread]

group
Gets and sets group properties

TV::group action [object-id] [other-args]

help
Displays help information

help [topic]

hex2dec
Converts to decimal

TV::hex2dec number
Version 6.2 TotalView Reference Guide 11

1
CLI Command Summary

image
image
Gets and sets image properties

TV::image action [object-id] [other-args]

process
Gets and sets process properties

TV::process action [object-id] [other-args]

quit
Terminates the debugging session

quit [–force]

respond
Provides responses to commands

TV::respond response command

scope
Returns information about a a symbol’s scope.

TV::scope action [object-id] [other-args]

source_process_startup
“Sources” a .tvd file when a process is loaded

TV::source_proccess_startup process_id

stty
Sets terminal properties

stty [stty-args]

symbol
Returns or sets internal TotalView symbol information

TV::symbol action [object-id] [other-args]

thread
Gets and sets thread properties

TV::thread action [object-id] [other-args]

type
Gets and sets type properties

TV::type action [object-id] [other-args]
12 TotalView Reference Guide Version 6.2

CLI Command Summary

type_transformation
type_transformation
Creates type transformations and examine properties

TV::type_transformation action [object-id] [other-args]

unalias
Removes an alias

unalias alias-name

Removes all aliases

unalias –all
Version 6.2 TotalView Reference Guide 13

1
CLI Command Summary

unalias
14 TotalView Reference Guide Version 6.2

Version 6.2
Chapter 2
CLI Commands
This chapter contains detailed descriptions of CLI commands.

Command Overview
This section lists all of the CLI commands. It also contains a short explanation of
what each command does.

General CLI Commands
The CLI commands in this group provide information on the general CLI operating
environment:

g alias: Creates or views pseudonym for commands and arguments.

g capture: Allows commands that print information to instead send their output to
a variable.

g dlappend: Appends list elements to a TotalView variable.

g dset: Changes or views values of TotalView variables.

g dunset: Restores default settings of TotalView variables.

g help: Displays help information.
g stty: Sets terminal properties.

g unalias: Removes a previously defined alias.
TotalView Reference Guide 15

2
CLI Commands

Command Overview
CLI Initialization and Termination
These commands initialize and terminate the CLI session, and add processes to CLI
control:

g dattach: Brings one or more processes currently executing in the normal runtime
environment (that is, outside TotalView) under TotalView control.

g ddetach: Detaches TotalView from a process.

g dgroups: Manipulates and manages groups.

g dkill: Kills existing user processes, leaving debugging information in place.

g dload: Loads debugging information about the program into TotalView and pre-
pares it for execution.

g drerun: Restarts a process.

g drun: Starts or restarts the execution of user processes under control of the CLI.

g exit, quit: Exits from TotalView, ending the debugging session.

Program Information
The following commands provide information about a program's current execution
location and allow you to browse the program's source files:

g ddown: Navigates through the call stack by manipulating the current frame.

g dflush: Unwinds stack from dprint computations.

g dlist: Browses source code relative to a particular file, procedure, or line.

g dmstat: Displays memory usage information.

g dprint: Evaluates an expression or program variable and displays the resulting
value.

g dptsets: Shows status of processes and threads in a P/T set.

g dstatus: Shows status of processes and threads.

g dup: Navigates through the call stack by manipulating the current frame.

g dwhat: Determines what a name refers to.

g dwhere: Prints information about the thread’s stack.
16 TotalView Reference Guide Version 6.2

CLI Commands

Command Overview
Execution Control
The following commands control execution:

g dcont: Continues execution of processes and waits for them.

g dfocus: Changes the set of processes, threads, or groups upon which a CLI com-
mand acts.

g dgo: Resumes execution of processes (without blocking).

g dhalt: Suspends execution of processes.

g dhold: Holds threads or processes.

g dnext: Executes statements, stepping over subfunctions.

g dnexti: Executes machine instructions, stepping over subfunctions.

g dout: Runs out of current procedure.

g dstep: Executes statements, moving into subfunctions if required.

g dstepi: Executes machine instructions, moving into subfunctions if required.

g dunhold: Releases held threads.

g duntil: Executes statements until a statement is reached.

g dwait: Blocks command input until processes stop.

g dworker: Adds or removes threads from a workers group.

Action Points

The following action point commands are responsible for defining and manipulat-
ing the points at which the flow of program execution should stop so that you can
examine debugger or program state:

g dactions: Views information on action point definitions and their current status; it
also saves and restores action points.

g dbarrier: Defines a process barrier breakpoint.

g dbreak: Defines a breakpoint.

g ddelete: Deletes an action point.

g ddisable: Temporarily disables an action point.

g denable: Reenables an action point that has been disabled.

g dwatch: Defines a watchpoint.
Version 6.2 TotalView Reference Guide 17

2
CLI Commands

Command Overview
Other Commands
The commands in the category do not fit into any of the other categories.

g dassign: Changes the value of a scalar variable.

g dcache: Clears the remote library cache.

g dcheckpoint: Creates a file that can later be used to restart a program.

g drestart: Restarts a checkpoint.
18 TotalView Reference Guide Version 6.2

CLI Commands

alias
alias Creates or views pseudonyms for commands
Format:

Creates a new user-defined pseudonym for a command

alias alias-name defn-body

Views previously defined aliases

alias [alias-name]

Arguments:
alias-name The name of the command pseudonym being defined.

defn-body The text that Tcl will substitute when it encounters alias-name.

Description:
The alias command associates a name you specify with text that you define. This
text can contain one or more commands. After you create an alias, you can use it in
the same way as a native TotalView or Tcl command. In addition, you can include an
alias as part of a definition of another alias.

If you just do not enter an alias-name argument, the CLI displays the names and def-
initions of all aliases. If you just specify an alias-name argument, the CLI displays the
definition of the alias.

Because the alias command can contain Tcl commands, you must ensure that defn-
body complies with all Tcl expansion, substitution, and quoting rules.

TotalView’s global startup file, tvdinit.tvd, defines a set of default aliases. All the
common commands have one- or two-letter aliases. (You can obtain a list of these
commands by typing alias—being sure not to use an argument—in the CLI
window.)

You cannot use an alias to redefine the name of a CLI-defined command. You can,
however, redefine a built-in CLI command by creating your own Tcl procedure. For
example, here is a procedure that disables the built-in dwatch command. When a
user types dwatch, the CLI executes this code instead of the built-in CLI code:

proc dwatch {} {
puts “The dwatch command is disabled”

}

Version 6.2 TotalView Reference Guide 19

2
CLI Commands

alias
The CLI does not parse defn-body (the command’s definition) until it is used. Thus,
you can create aliases that are nonsensical or incorrect. The CLI only detects errors
when it tries to execute your alias.

When you obtain help for a command, the help text includes information for
TotalView’s predefined aliases.

Examples:
alias nt dnext Defines a command called nt that executes the dnext

command.

alias nt Displays the definition of the nt alias.

alias Displays the definitions of all aliases.

alias m {dlist main}
Defines an alias called m that lists the source code of function
main().

alias step2 {dstep; dstep}
Defines an alias called step2 that does two dstep commands.
This new command will apply to the focus that exists when
someone uses this alias.

alias step2 {s ; s}
Creates an alias that performs the same operations as the one
in the previous example. It differs in that it uses the alias for
dstep. Note that you could also create an alias that does the
same thing as follows: alias step2 {s 2}.

alias step1 {f p1. dstep}
Defines an alias called step1 that steps the first user thread in
process 1. Note that all other threads in the process run freely
while TotalView steps the current line in your program.
20 TotalView Reference Guide Version 6.2

CLI Commands

capture
capture Returns a command’s output as a string
Format:

capture [–out | –err | –both] [–f filename] command

Arguments:
-out Tells the CLI that it should only capture output that is sent to

stdout. This option is the default.

-err Tells the CLI to send the output it captures to stderr.

-both Tells the CLI to send the output it captures to stdout and
stderr.

-f filename Tells the CLI to send the output it captures to filename.

command The CLI command (or commands) whose output is being cap-
tured. If you are specifying more than one command, you
must enclose them within braces ({ }).

Description:
The capture command executes command, capturing all output that would normally
go to the console into a string. After command completes, it returns the string. This
command is analogous to the UNIX shell’s back-tick feature; that is, `command`.
The capture command lets you obtain the printed output of any CLI command so
that you can assign it to a variable or otherwise manipulate it.

Examples:
set save_stat [capture st]

Saves the current process status into a Tcl variable.

set vbl [capture {foreach i {1 2 3 4} {p int2_array($i)}}]
Saves the printed output of four array elements into a Tcl vari-
able. Here is some sample output:

int2_array(1) = -8 (0xfff8)
int2_array(2) = -6 (0xfffa)
int2_array(3) = -4 (0xfffc)
int2_array(4) = -2 (0xfffe)

Because capture records all of the information sent to it by
the commands in the foreach, you do not have to use a dlist
command.

exec cat << [capture help commands] > cli_help.txt
Writes the help text for all TotalView commands to the
cli_help.txt file.
Version 6.2 TotalView Reference Guide 21

2
CLI Commands

capture
set ofile [open cli_help.txt w]
capture –f $ofile help commands
close $ofile Also writes the help text for all TotalView commands to the

cli_help.txt file. This set of commands is more efficient than
the previous command because the captured data is not
buffered.
22 TotalView Reference Guide Version 6.2

CLI Commands

dactions
dactions Displays information, saves, and reloads action points
Format:

Displays information about action points

dactions [ap-id-list] [–at source-loc] [–enabled | –disabled]

Saves action points to a file

dactions –save [filename]

Loads previously saved action points

dactions –load [filename]

Arguments:
ap-id-list A list of action point identifiers. If you specify individual action

points, the information displayed is limited to these points.

If you omit this argument, TotalView displays summary infor-
mation about all action points in the processes in the focus
set. If one ID is entered, TotalView displays full information for
it. If more than one ID is entered, TotalView just displays sum-
mary information for each.

–at source-loc Displays the action points at source-loc.

–enabled Only shows enabled action points.

–disabled Only shows disabled action points.

–save Writes information about action points to a file.

–load Restores action point information previously saved in a file.

filename The name of the file into which TotalView will read and write
action point information. If you omit this file name, TotalView
writes them to a file named program_name.TVD.v3breakpoints,
where program_name is the name of your program.

Description:
The dactions command displays information about action points in the processes
in the current focus. The information is printed; it is not returned.

This command also lets you obtain the action point identifier. You will need to use
this identifier when you delete, enable, and disable action points.

NOTE The identifier is returned when the action point is created. It is also displayed when
the target stops at an action point.
Version 6.2 TotalView Reference Guide 23

2
CLI Commands

dactions
You can include specific action point identifiers as arguments to the command
when detailed information is required. The –enabled and –disabled options restrict
output to action points in one of these states.

You cannot use the dactions command when you are debugging a core file or
before TotalView loads executables.

The –save option tells TotalView that it should write action point information to a
file so that either you or TotalView can restore your action points at a later time.
The –load option tells TotalView that it should immediately read in the saved file. If
you use the filename argument with either of these options, TotalView either writes
to or reads from this file. If you do not use this argument, it uses a file named pro-
gramname.TVD.v3breakpoints where programname is the name of your program. This
file is written to the same directory as your program.

The information saved includes expression information associated with the action
point and whether the action point is enabled or disabled. For example, if your pro-
gram’s name is foo, it writes this information to foo.TVD.v3breakpoints.

NOTE TotalView does not save information about watchpoints.

If a file with the default name exists, TotalView can read this information when it
starts your program. When TotalView exits, it can create the default. For more infor-
mation, see File > Preferences in TotalView’s Help system.

Command alias:
You may find the following alias useful:

Examples:
ac –at 81 Displays information about the action points on line 81.

(Notice that this example uses the alias instead of the full
command name.) Here is the output from this command:

ac –at 81
1 shared action point for group 3:
1 addr=0x10001544 [arrays.F#81] Enabled
Share in group: true
Stop when hit: group

Alias Definition Meaning

ac {dactions} Displays all action points
24 TotalView Reference Guide Version 6.2

CLI Commands

dactions
dactions 1 3 Displays information about action points 1 and 3, as follows:

2 shared action points for process 1:
1 addr=0x100012a8 [arrays.F#56] Enabled
3 addr=0x100012c0 [arrays.F#57] Enabled

dfocus p1 dactions
Displays information on all action points defined within pro-
cess 1.

dfocus p1 dactions –enabled
Displays information on all enabled action points within pro-
cess 1.
Version 6.2 TotalView Reference Guide 25

2
CLI Commands

dassign
dassign Changes the value of a scalar variable
Format:

dassign target value

Arguments:
target The name of a scalar variable within your program.

value A source-language expression that evaluates to a scalar value.
This expression can use the name of another variable.

Description:
The dassign command evaluates an expression and replaces the value of a variable
with the evaluated result. The location may be a scalar variable, a dereferenced
pointer variable, or an element in an array or structure.

The default focus for dassign is thread. So, if you do not change the focus, this com-
mand acts upon the thread of interest. If the current focus specifies a width that is
wider than t (thread) and is not d (default), dassign iterates over the threads in the
focus set and performs the assignment in each. In addition, if you use a list with the
dfocus command, dassign iterates over each list member.

The CLI interprets each symbol name in the expression according to the current
context. Because the value of a source variable may not have the same value across
threads and processes, the value assigned can differ in your threads and processes.
If the data type of the resulting value is incompatible with that of the target loca-
tion, you must cast the value into the target’s type. (Casting is described in Chapter
12 of the TOTALVIEW USERS GUIDE.)

Here are some things you should know about assigning characters and strings:

g If you are assigning a character to a target, place the character value within single
quotation marks; for example, ‘c’.

g You can use the standard C language escape character sequences; for example,
\n, \t, and the like. These escape sequences can also be in a character or string
assignment.

g If you are assigning a string to a target, place the string within quotation marks.
However, you must “escape” the quotation marks so they are not interpreted by
Tcl; for example, \”The quick brown fox\”.

If value contains an expression, the expression is evaluated by TotalView’s expres-
sion system. This system is discussed in Chapter 12 of the TOTALVIEW USERS GUIDE.
26 TotalView Reference Guide Version 6.2

CLI Commands

dassign
Command alias:
You may find the following alias useful:

Examples:
dassign scalar_y 102

Stores the value 102 in each occurrence of variable scalar_y
for all processes and threads in the current set.

dassign i 10*10
Stores the value 100 in variable i.

dassign i i*i Does not work and the CLI displays an error message. If i is a
simple scalar variable, you could use the following statements:

set x [lindex [capture dprint i] 2]
dassign i [expr $x * $x]

f {p1 p2 p3} as scalar_y 102
Stores the value 102 in each occurrence of variable scalar_y
contained in processes 1, 2, and 3.

Alias Definition Meaning

as {dassign} Changes a scalar variable’s value
Version 6.2 TotalView Reference Guide 27

2
CLI Commands

dattach
dattach Brings currently executing processes under CLI control
Format:

dattach [–g gid] [–r hname]
[–ask_attach_parallel | –no_attach_parallel]
[–c corefile-name]
[–e] filename pid-list

Arguments:
–g gid Sets the control group for the processes being added to be

group gid. This group must already exist. (The CLI GROUPS
variable contains a list of all groups. See GROUPS on page 164
for more information.)

–r hname The host on which the process is running. The CLI will launch a
TotalView Debugger Server on the host machine if one is not
already running there. Consult the Setting Up Parallel Debugging
Sessions chapter of the TOTALVIEW USERS GUIDE for information
on the launch command used to start this server.

Setting a host sets it for all PIDs attached to in this command.
If you do not name a host machine, the CLI uses the local
host.

–ask_attach_parallel
Asks if TotalView should attach to parallel processes of a par-
allel job. The default is to automatically attach to processes.
For additional information, see File > Preferences in
TotalView’s Help.

–no_attach_parallel Do not attach to any additional parallel processes in a parallel
job. For additional information, see File > Preferences in
TotalView’s Help.

-c corefile-name Tells the CLI that it should load the core file named in the
argument that follows. If you use this option, you must also
special a file name (filename).

–e Tells the CLI that the next argument is a file name. You need to
use this argument if the file name begins with a dash (–) or
only uses numeric characters.

filename The name of the executable. Setting an executable here, sets it
for all PIDs being attached to in this command. If you do not
include this argument, the CLI tries to determine the
28 TotalView Reference Guide Version 6.2

CLI Commands

dattach
executable file from the process. Some architectures do not
allow this to occur.

pid-list A list of system-level process identifiers (such as a UNIX PID)
naming the processes that TotalView will control. All PIDs must
reside on the same system, and they will all be placed into the
same control group.

If you need to place the processes in different groups or
attach to processes on more than one system, you must use
multiple dattach commands.

Description:
The dattach command tells TotalView to attach to one or more processes, making
it possible to continue process execution under CLI control.

This command returns the TotalView process ID (DPID) as a string. If you specify
more than one process in a command, dattach returns a list of DPIDs instead of a
single value.

TotalView places all processes to which it attaches in one dattach command in the
same control group. This allows you to place all processes in a multiprocess pro-
gram executing on the same system in the same control group.

If a program has more than one executable, you must use a separate dattach for
each.

If you have not already loaded filename, the CLI searches for it. The search will
include all directories in the EXECUTABLE_PATH CLI variable.

The process identifiers specified in the pid-list must refer to existing processes in
the run-time environment. TotalView attaches to the processes, regardless of their
execution states.

Command alias:
You may find the following alias useful:

Alias Definition Meaning

at {dattach} Brings the process under CLI control
Version 6.2 TotalView Reference Guide 29

2
CLI Commands

dattach
Examples:
dattach mysys 10020

Loads debugging information for mysys and brings the pro-
cess known to the run-time system by PID 10020 under CLI
control.

dattach –e 123 10020
Loads file 123 and brings the process known to the run-time
system by PID 10020 under CLI control.

dattach –g 4 –r Enterprise myfile 10020
Loads myfile that is executing on the host named Enterprise
into group 4 and brings the process known to the run-time
system by PID 10020 under CLI control. If a TotalView Debug-
ger Server (tvdsvr) is not running on Enterprise, the CLI will
start it.

dattach my_file 51172 52006
Loads debugging information for my_file and brings the pro-
cesses corresponding to PIDs 51172 and 52006 under CLI
control.

set new_pid [dattach –e mainprog 123]
dattach –r otherhost –g $CGROUP($new_pid) –e slaveprog 456

Begins by attaching to mainprog running on the local host. It
then attaches to slaveprog running on otherhost and inserts
them both in the same control group.
30 TotalView Reference Guide Version 6.2

CLI Commands

dbarrier
dbarrier Defines a process or thread barrier breakpoint
Format:

Creates a barrier breakpoint at a source location

dbarrier source-loc [–stop_when_hit width]
[–stop_when_done width]

Creates a barrier breakpoint at an address

dbarrier –address addr [–stop_when_hit width]
[–stop_when_done width]

Arguments:
source-loc The barrier breakpoint location as a line number or as a string

containing a file name, function name, and line number, each
separated by # characters; for example, #file#line. If you
omit parts of this specification, the CLI will create them for
you. For more information, see “Qualifying Symbol Names” in
Chapter 12 of the TOTALVIEW USERS GUIDE.

–address addr The barrier breakpoint location as an absolute address in the
address space of the program.

–stop_when_hit width
Tells the CLI what else it should stop when it stops the thread
arriving at a barrier.

If you do not use this option, the value of the
BARRIER_STOP_ALL variable indicates what TotalView will
stop.

This command’s width argument indicates what else TotalView
stops. You can enter one of the following three values:

group Stops all processes in the control group when the barrier is hit.

process Stops the process that hit the barrier.

none Stops the thread that hit the barrier; that is, the thread will be
held and all other threads continue running. If you apply this
width to a process barrier, TotalView will stop the process that
hit the breakpoint.

–stop_when_done width
After all processes or threads reach the barrier, the CLI
releases all processes and threads held at the barrier. (Released
means that these threads and processes can run.) Setting this
Version 6.2 TotalView Reference Guide 31

2
CLI Commands

dbarrier
option tells the CLI that it should stop additional threads con-
tained in the same group or process.

If you do not use this option, the value of the
BARRIER_STOP_WHEN_DONE variable indicates what else
TotalView stops.

The width argument indicates what else is stopped. You can
enter one of the following three values:

group Stops the entire control group when the barrier is satisfied.

process Stops the processes containing threads in the satisfaction set
when the barrier is satisfied.

You will find information on the “satisfaction set” in this
topic’s Description section.

none Stops the satisfaction set. For process barriers, process and
none have the same effect. This is the default if
BARRIER_STOP_WHEN_DONE is none.

Description:
The dbarrier command sets a process or thread barrier breakpoint that is triggered
when execution arrives at a location. This command returns the ID of the newly cre-
ated breakpoint.

The dbarrier command is most often used to synchronize a set of threads. The P/T
set defines which threads are affected by the barrier. When a thread reaches a bar-
rier, it stops, just as it does for a breakpoint. The difference is that TotalView pre-
vents—that is, holds—each thread reaching the barrier from responding to resume
commands (for example, dstep, dnext, and dgo) until all threads in the affected set
arrive at the barrier. When all threads reach the barrier, TotalView considers the bar-
rier to be satisfied and releases these threads. They are just released; they are not con-
tinued. That is, TotalView leaves them stopped at the barrier. If you now continue
the process, those threads stopped at the barrier also run along with any other
threads that were not participating with the barrier. After they are released, they
can respond to resume commands.

If the process is stopped and then continued, the held threads, including the ones
waiting on an unsatisifed barrier, do not run. Only unheld threads run.

The satisfaction set for the barrier is determined by the current focus. If the focus
group is a thread group, TotalView creates a thread barrier.
32 TotalView Reference Guide Version 6.2

CLI Commands

dbarrier
g When a thread hits a process barrier, TotalView holds the thread’s process.

g When a thread hits a thread barrier, TotalView holds the thread; TotalView may
also stop the thread’s process or control group. Neither are held.

TotalView determines the default focus width based on the setting of the
SHARE_ACTION_POINT variable. If it is set to true, the default is group. Otherwise,
it is process.

TotalView determines what processes and threads are part of the satisfaction set by
taking the intersection of the share group with the focus set. (Barriers cannot
extend beyond a share group.)

The CLI displays an error message if you use an inconsistent focus list.

NOTE Barriers can create deadlocks. For example, if two threads participate in two different
barriers, each could be left waiting at different barriers, barriers that can never be satisfied. A
deadlock can also occur if a barrier is set in a procedure that will never be invoked by a thread
in the affected set. If a deadlock occurs, use the ddelete command to remove the barrier since
deleting the barrier also releases any threads held at the barrier.

The –stop_when_hit option tells TotalView what other threads it should stop when
a thread arrives at a barrier.

The –stop_when_done option controls the set of additional threads that TotalView
will stop when the barrier is finally satisfied. That is, you can also stop an additional
collection of threads after the last expected thread arrives and all the threads held
at the barrier are released. Normally, you will want to stop the threads contained in
the control group.

If you omit a stop option, TotalView sets the default behavior by using the
BARRIER_STOP_ALL and BARRIER_STOP_WHEN_DONE variables. For more infor-
mation, see dset.

The none argument for these options indicate that the CLI should not stop addi-
tional threads.

g If –stop_when_hit is none when a thread hits a thread barrier, TotalView just
stops that thread; it does not stop other threads.

g If –stop_when_done to none, TotalView does not stop additional threads, aside
from the ones that are already stopped at the barrier.
Version 6.2 TotalView Reference Guide 33

2
CLI Commands

dbarrier
TotalView plants the barrier point in the processes or groups specified in the cur-
rent focus. If the current focus:

g Does not indicate an explicit group, the CLI creates a process barrier across the
share group.

g Indicates a process group, the CLI creates a process barrier that is satisfied when
all members of that group reach the barrier.

g Indicates a thread group, TotalView creates a thread barrier that is satisfied when
all members of the group arrive at the barrier.

The following example illustrates these differences. If you set a barrier with the
focus set to a control group (which is the default), TotalView creates a process bar-
rier. This means that the –stop_when_hit value is set to process even though you
specified thread.

d1.<> dbarrier 580 –stop_when_hit thread
2
d1.<> ac 2
1 shared action point for group 3:

2 addr=0x120005598 [../regress/fork_loop.cxx#580]
Enabled (barrier)

Share in group: true
Stop when hit: process
Stop when done: process
process barrier; satisfaction set = group 1

However, if you create the barrier with a specific workers focus, stop_when_hit
remains set to thread:

1.<> baw 580 –stop_when_hit thread
1
d1.<> ac 1
1 unshared action point for process 1:

1 addr=0x120005598 [../regress/fork_loop.cxx#580]
Enabled (barrier)

Share in group: false
Stop when hit: thread
Stop when done: process
thread barrier; satisfaction set = group 2
34 TotalView Reference Guide Version 6.2

CLI Commands

dbarrier
Command alias:
You may find the following aliases useful:

Examples:
dbarrier 123 Stops each process in the control group when it arrives at line

123. After all arrive, the barrier is satisfied and TotalView
releases all processes.

dfocus {p1 p2 p3} dbarrier my_proc
Holds each thread in processes 1, 2, and 3 as it arrives at the
first executable line in procedure my_proc. After all arrive, the
barrier is satisfied and TotalView releases all processes.

dfocus gW dbarrier 642 –stop_when_hit none
Sets a thread barrier at line 642 on the workers group. The
process is continued automatically as each thread arrives at
the barrier. That is, threads that are not at this line continue
running.

Alias Definition Meaning

ba {dbarrier} Defines a barrier.

baw {dfocus pW dbarrier
–stop_when_done process}

Creates a thread barrier across the
worker threads in the process of
interest. TotalView sets the set of
threads stopped when the barrier is
satisfied to the process containing
the satisfaction set.

BAW {dfocus gW dbarrier
–stop_when_done group}

Creates a thread barrier across the
worker threads in the share group
of interest. The set of threads
stopped when the barrier is satis-
fied will be the entire control group.
Version 6.2 TotalView Reference Guide 35

2
CLI Commands

dbreak
dbreak Defines a breakpoint
Format:

Creates a breakpoint at a source location

dbreak source-loc [–p | –g | –t] [[–l lang] –e expr]

Creates a breakpoint at an address

dbreak –address addr [–p | –g | –t] [[–l lang] –e expr]

Arguments:
source-loc The breakpoint location specified as a line number or as a

string containing a file name, function name, and line number,
each separated by # characters; for example, #file#line.
Defaults are constructed if you omit parts of this specification.
For more information, see “Qualifying Symbol Names” in Chapter
12 of the TOTALVIEW USERS GUIDE.

–address addr The breakpoint location specified as an absolute address in
the address space of the program.

–p Tells TotalView to stop the process that hit this breakpoint.
You can set this option as the default by setting the STOP_ALL
variable to process. See dset on page 96 for more information.

–g Tells TotalView to stop all processes in the process’s control
group when the breakpoint is hit. You can set this option as
the default by setting the STOP_ALL variable to group. See
dset on page 96 for more information.

–t Tells TotalView to stop the thread that hit this breakpoint. You
can set this option as the default by setting the STOP_ALL
variable to thread. See dset on page 96 for more information.

–l lang Sets the programming language used when you are entering
expression expr. The languages you can enter are c, c++, f7,
f9, and asm (for C, C++, FORTRAN 77, Fortran 9x, and
assembler). If you do not specify a language, TotalView
assumes that you wrote the expression in the same language
as the routine at the breakpoint.

–e expr When the breakpoint is hit, TotalView will evaluate expression
expr in the context of the thread that hit the breakpoint. The
language statements and operators you can use are described
in Chapter 14 of the TOTALVIEW USERS GUIDE.
36 TotalView Reference Guide Version 6.2

CLI Commands

dbreak
Description:
The dbreak command defines a breakpoint or evaluation point that TotalView trig-
gers when execution arrives at the specified location. The ID of the new breakpoint
is returned.

Each thread stops when it arrives at a breakpoint.

Specifying a procedure name without a line number tells the CLI to set an action
point at the beginning of the procedure. If you do not name a file, the default is the
file associated with the current source location.

The CLI may not be able to set a breakpoint at the line you specify. This occurs
when a line does not contain an executable statement.

If you try to set a breakpoint on a line at which the CLI cannot stop execution, it
sets one at the nearest following line where it can halt execution.

When the CLI displays information on a breakpoint’s status, it displays the location
where execution will actually stop.

If the CLI encounters a stop group breakpoint, it suspends each process in the group
as well as the process containing the triggering thread. The CLI then shows the
identifier of the triggering thread, the breakpoint location, and the action point
identifier.

TotalView determines the default focus width based on the setting of the
SHARE_ACTION_POINT variable. If it is set to true, the default is group. Otherwise,
it is process.

One possibly confusing aspect of using expressions is that their syntax differs from
that of Tcl. This is because you will need to embed code written in Fortran, C, or
assembler within Tcl commands. In addition, your expressions will often include
TotalView built-in functions. For example, if you want to use the TotalView $tid
built-in function, you will need to type it as \$tid.
Version 6.2 TotalView Reference Guide 37

2
CLI Commands

dbreak
Command alias:
You may find the following aliases useful:

Examples:
For all examples, assume the current process set is d2.< when the breakpoint is
defined.

dbreak 12 Suspends process 2 when it reaches line 12. However, if the
STOP_ALL variable is set to group, all other processes in the
group are stopped. In addition, if you have set the
SHARE_ACTION_POINT variable to true, the breakpoint is
placed in every process in the group.

dbreak –address 0x1000764
Suspends process 2 when address 0x1000764 is reached.

b 12 –g Suspends all processes in the current control group when line
12 is reached.

dbreak 57 –l f9 –e {goto $63}
Causes the thread that struck the breakpoint to transfer to
line 63. The host language for this statement is Fortran 90 or
Fortran 95.

dfocus p3 b 57 –e {goto $63}
In process 3, sets the same evaluation point as the previous
example.

Alias Definition Meaning

b {break} Sets a breakpoint

bt {dbreak t} Sets a breakpoint just on the thread of interest
38 TotalView Reference Guide Version 6.2

CLI Commands

dcache
dcache Clears the remote library cache
Format:

dcache –flush

Arguments:
–flush Delete all files from the library cache that are not currently

being used.

Description:
The dcache –flush command tells TotalView to remove the library files that it places
in your cache. This cache is located in the .totalview/lib_cache subdirectory con-
tained in your home directory.

When you are debugging programs on remote systems that use libraries that either
do not exist on the host or whose version differ, TotalView copies the library files
into your cache. This cache can become large.

TotalView automatically deletes cached library files that it hasn't used in the last
week. If you need to reclaim additional space, this command will remove files not
currently being used and that are not quite old enough for TotalView to automati-
cally delete.
Version 6.2 TotalView Reference Guide 39

2
CLI Commands

dcheckpoint
dcheckpoint Creates a checkpoint image of processes (SGI only)
Format:

dcheckpoint [after_checkpointing] [–by process_set] [–no_park]
[–ask_attach_parallel | –no_attach_parallel]
[–no_preserve_ids] [–force] checkpoint-name

Arguments:
after_checkpointing Defines the state of the process both before and after the

checkpoint. Use one of the following options:

–delete Processes exit after being checkpointed.

–detach Processes continue running after being checkpointed. In addi-
tion, TotalView detaches from them.

–go Processes continue running after being checkpointed.

–halt Processes halt after they are checkpointed.

–by process_set Indicates the set of processes that will be checkpointed. If you
do not use a process_set option, TotalView only checkpoints the
focus process. Your options are:

ash Checkpoint the array session.

hid Checkpoint the hierarchy rooted in the focus process.

pgid Checkpoint the entire UNIX process group.

sid Checkpoint the entire process session.

–no_park Tells TotalView that it should not park all processes before
TotalView begins checkpointing them. If you use this option,
you will also need to use the drestart command’s –no_unpark
option. Checkpoints that will be restarted from a shell must
use this option.

–ask_attach_parallel
Asks if TotalView should reattach to parallel processes of a
parallel job. (Some systems automatically detach you from
processes being checkpointed.)

–no_attach_parallel
Tells TotalView that it should not reattach to processes from
which the checkpointing processes detached. (Some systems
automatically detach you from processes being check-
pointed.)
40 TotalView Reference Guide Version 6.2

CLI Commands

dcheckpoint
–no_preserve_ids Lets TotalView assign new IDs when it restarts a checkpoint. If
you do not use this option, the same IDs are used.

–force Tells TotalView to overwrite an existing checkpoint.

checkpoint-name The name being assigned to the checkpoint.

Description:
The dcheckpoint command saves program and process information into the check-
point-name file. This information includes process and group IDs. Some time later,
you will use the drestart command to restart the program.

NOTE This command does not save TotalView breakpoint information.

The following restrictions exist when you are trying to checkpoint IRIX processes.

g IRIX will not checkpoint a process that is running remotely and which communi-
cates using sockets. As the TotalView Debugger Server (tvdsvr) uses sockets to
redirect stdin, stdout, and stderr, you will need to used the drun command to
modify the way your processes send information to a tty before creating a check-
point.

g Because SGI MPI makes extensive use of sockets, you cannot checkpoint SGI
MPI programs.

The after_checkpointing options let you specify what happens after the checkpoint
operation concludes. If you do not specify an option, the CLI tells the check-
pointed processes that they should stop. This lets you investigate a program’s
state at the checkpoint position. In contrast, –go tells the CLI that it should let the
processes continue to run. The –detach and –halt options are used less frequently.
The –detach option shuts down the CLI and leaves the processes running. This
command’s –halt option is similar to –detach, differing only in that processes
started by the CLI and TotalView are also terminated.

The process_set options tell TotalView which processes it should checkpoint. While
the focus set can only contain one process, processes in the same process group,
process session, process hierarchy, or array session can also be included in the
same checkpoint. If you do not use one of the –by options, TotalView only check-
points the focus process.

If the focus group contains more than one process, the CLI displays an error
message.
Version 6.2 TotalView Reference Guide 41

2
CLI Commands

dcheckpoint
Just before TotalView begins checkpointing your program, it temporarily stops (that
is, parks) the processes that are being checkpointed. Parking ensures that the pro-
cesses do not run freely after a dcheckpoint or drestart operation. (If they did, your
code would begin running before you get control of it.) If you will be restarting the
checkpoint file outside of TotalView, you must use the –no_park option.

On some operating systems (including SGI), the CLI detaches from processes
before they are checkpointed. By default, the CLI automatically reattaches to them.
If you do not want this to occur, use the –no_attach_parallel option to tell the CLI
that it shouldn’t reattach, or use the –ask_attach_parallel option to indicate that it
should ask you if it should reattach.

Examples:
dcheckpoint check1

Checkpoints the current process. TotalView writes the check-
point information into the check1 file. These processes stop.

f3 dcheckpoint check1
Checkpoints process 3. Process 3 stops. TotalView writes the
checkpoint information into the check1 file.

f3 dcheckpoint –go check1
Checkpoints process 3. Process 3 continues to run. TotalView
writes the checkpoint information into the check1 file.

f3 dcheckpoint –by pgid –detach check1
Checkpoints process 3 and all other processes in the same
UNIX process group. All of the checkpointed processes con-
tinuing running but they run detached from the CLI. TotalView
writes the checkpoint information into the check1 file.
42 TotalView Reference Guide Version 6.2

CLI Commands

dcont
dcont Continues execution and waits for execution to stop
Format:

dcont

Description:
The dcont command continues all processes and threads in the current focus and
then waits for all of them to stop.

This command is a Tcl macro whose definition is as follows:

proc dcont {args} {uplevel dgo; "dwait $args" }

This behavior is often what you want to do in scripts. It is seldom what you want to
do interactively.

NOTE You can interrupt this action by typing Ctrl+C. This tells TotalView to stop executing
these processes.

This command has no arguments.

A dcont command completes when all threads in the focus set of processes stop
executing.

Command alias:
You may find the following aliases useful:

Examples:
dcont Resumes execution of all stopped/runnable threads belonging to

processes in the current focus. (Threads held at barriers are
not affected.) The command blocks further input until all
threads in all target processes stop. After the CLI displays its
prompt, you can enter additional commands.

dfocus p1 dcont
Resumes execution of all stopped/runnable threads belonging to
process 1. The CLI does not accept additional commands until
the process stops.

Alias Definition Meaning

co {dcont} Resume

CO {dfocus g dcont} Group-level resume
Version 6.2 TotalView Reference Guide 43

2
CLI Commands

dcont
dfocus {p1 p2 p3} co
Resumes execution of all stopped/runnable threads belonging to
processes 1, 2, and 3.

CO Resumes execution of all stopped/runnable threads belonging to
the current group.
44 TotalView Reference Guide Version 6.2

CLI Commands

ddelete
ddelete Deletes action points
Format:

Deletes some action points

ddelete action-point-list

Deletes all action points

ddelete –a

Arguments:
action-point-list A list of the action points being deleted.

–a Tells TotalView to delete all action points in the current focus.

Description:
The ddelete command permanently removes one or more action points. The argu-
ment to this command lets you specify which action points the CLI should delete.
The –a option indicates that the CLI should delete all action points.

If you delete a barrier point, the CLI releases the processes and threads held at it.

Command alias:
You may find the following alias useful:

Examples:
ddelete 1 2 3 Deletes breakpoints 1, 2, and 3.

ddelete –a Deletes all action points associated with processes in the cur-
rent focus.

dfocus {p1 p2 p3 p4} ddelete –a
Deletes all the breakpoints associated with processes 1
through 4. Breakpoints associated with other threads are not
affected.

dfocus a de –a
Deletes all action points known to the CLI.

Alias Definition Meaning

de {ddelete} Deletes action points
Version 6.2 TotalView Reference Guide 45

2
CLI Commands

ddetach
ddetach Detaches from processes
Format:

ddetach

Description:
The ddetach command detaches the CLI from all processes in the current focus.
This undoes the effects of attaching the CLI to a running process; that is, the CLI
releases all control over the process, eliminates all debugger state information
related to it (including action points), and allows the process to continue executing
in the normal run-time environment.

This command has no arguments.

You can detach any process controlled by the CLI; the process being detached
does not have to be originally loaded with a dattach command.

After this command executes, you are no longer able to access program variables,
source location, action point settings, or other information related to the detached
process.

If a single thread serves as the set, the CLI detaches the process containing the
thread.

Command alias:
You may find the following alias useful:

Examples:
ddetach Detaches the process or processes that are in the current

focus.

dfocus {p4 p5 p6} det
Detaches processes 4, 5, and 6.

dfocus g2 det Detaches all processes in the control group associated with
process 2.

Alias Definition Meaning

det {ddetach} Detaches from processes
46 TotalView Reference Guide Version 6.2

CLI Commands

ddisable
ddisable Temporarily disables action points
Format:

Disables some action points

ddisable action-point-list

Disables all action points

ddisable –a

Arguments:
action-point-list A list of the action points being disabled.

–a Tells TotalView to disable all action points.

Description:
The ddisable command temporarily deactivates action points. This command does
not, however, delete them.

The first form of this command lets you explicitly name the IDs of the action points
being disabled. The second form lets you disable all action points.

Command alias:
You may find the following alias useful:

Examples:
ddisable 3 7 Disables the action points whose IDs are 3 and 7.

di –a Disables all action points in the current focus.

dfocus {p1 p2 p3 p4} ddisable –a
Disables action points associated with processes 1 through 4.
Action points associated with other processes are not
affected.

Alias Definition Meaning

di {ddisable} Temporarily disables action points
Version 6.2 TotalView Reference Guide 47

2
CLI Commands

ddown
ddown Moves down the call stack
Format:

ddown [num-levels]

Arguments:
num-levels Number of levels to move down. The default is 1.

Description:
The ddown command moves the selected stack frame down one or more levels. It
also prints the new frame’s number and function name.

Call stack movements are all relative, so ddown effectively “moves down” in the
call stack. (If “up” is in the direction of main(), then “down” is back to where you
were before moving through stack frames.)

Frame 0 is the most recent—that is, the currently executing—frame in the call
stack, frame 1 corresponds to the procedure that invoked the currently executing
one, and so on. The call stack’s depth is increased by one each time a procedure is
entered, and decreased by one when it is exited.

The command affects each thread in the focus. You can specify any collection of
processes and threads as the target set.

In addition, the ddown command modifies the current list location to be the cur-
rent execution location for the new frame; this means that a dlist command dis-
plays the code surrounding this new location.

The context and scope changes made by this command remain in effect until the
CLI executes a command that modifies the current execution location (for example,
dstep), or until you enter a dup or ddown command.

If you tell the CLI to move down more levels than exist, the CLI simply moves down
to the lowest level in the stack (which was the place where you began moving
through the stack frames).

Command alias:
You may find the following alias useful:

Alias Definition Meaning

d {ddown} Moves down the call stack
48 TotalView Reference Guide Version 6.2

CLI Commands

ddown
Examples:
ddown Moves down one level in the call stack. As a result, for exam-

ple, dlist commands that follow will refer to the procedure that
invoked this one. Here is an example of what is printed after
you enter this command:

0 check_fortran_arrays_ PC=0x10001254,
FP=0x7fff2ed0 [arrays.F#48]

d 5 Moves the current frame down five levels in the call stack.
Version 6.2 TotalView Reference Guide 49

2
CLI Commands

denable
denable Enables action points
Format:

Enables some action points

denable action-point-list

Enables all disabled action points in the current focus

denable –a

Arguments:
action-point-list The identifiers of the action points being enabled.

–a Tells TotalView to enable all action points.

Description:
The denable command reactivates action points that you had previously disabled
with the ddisable command. The –a option tells the CLI to enable all action points
in the current focus.

If you have not saved the ID values of disabled action points, you can use the
dactions command to obtain a list of this information.

Command alias:
You may find the following alias useful:

Examples:
denable 3 4 Enables two previously identified action points. These action

points were previously disabled with the ddisable command.

dfocus {p1 p2} denable –a
Enables all action points associated with processes 1 and 2.
Settings associated with other processes are not affected.

en –a Enables all action points associated with the current focus.

f a en –a Enables all actions points in all processes.

Alias Definition Meaning

en {denable} Reenables action points
50 TotalView Reference Guide Version 6.2

CLI Commands

dflush
dflush Unwinds stack from suspended computations
Format:

Removes the top-most suspended expressions evaluations

dflush

Removes the computation indicated by a suspended evaluation ID and all those that
precede it

dflush susp-eval-id

Removes all suspended computations

dflush –all

Arguments:
susp-eval-id The ID returned or thrown by the dprint command or which is

printed by the dwhere command.

-all Flushes all suspended evaluations within the current focus.

Description:
The dflush command unwinds the stack to eliminate frames generated by sus-
pended computations. Typically, these can occur if you had used the dprint
–nowait command. However, this situation can occur, for example, if an error
occurred in a function call in an eval point or in an expression within a Tools >
Evaluate window or if you use a $stop function.

You can use this command in three ways:

g If you don’t use an argument, the CLI unwinds the top-most suspended evalua-
tion in all threads in the current focus.

g If you use a susp-eval-id, the CLI unwinds each stack of all threads in the current
focus, flushing all pending computations up to and including the frame associ-
ated with the ID.

g If you use the –all option, the CLI flushes all suspended evaluations in all threads
in the current focus.

If no evaluations are suspended. the CLI ignores this command. If you do not indi-
cate a focus width, the default focus is thread level.

Examples:
The following example uses dprint to place five suspended routines on the stack. It
then uses dflush to remove them. As you follow the example, you’ll see the three
different ways you can use the dflush command.
Version 6.2 TotalView Reference Guide 51

2
CLI Commands

dflush
#
Create 5 suspended functions
#
d1.<> dprint -nowait nothing2(7)
7
Thread 1.1 hit breakpoint 4 at line 310 in "nothing2(int)"
d1.<> dprint -nowait nothing2(8)
8
Thread 1.1 hit breakpoint 4 at line 310 in "nothing2(int)"
d1.<> dprint -nowait nothing2(9)
9
Thread 1.1 hit breakpoint 4 at line 310 in "nothing2(int)"
d1.<> dprint -nowait nothing2(10)
10
Thread 1.1 hit breakpoint 4 at line 310 in "nothing2(int)"
d1.<> dprint -nowait nothing2(11)
11
Thread 1.1 hit breakpoint 4 at line 310 in "nothing2(int)"
...

#
Here’s what the top of the call stack looks like:
#

d1.<> dwhere
 0 nothing2 PC=0x00012520, FP=0xffbef130 [fork_loop_2.cxx#310]
 1 ***** Eval Function Call (11) ****************
 2 nothing2 PC=0x00012520, FP=0xffbef220 [fork_loop_2.cxx#310]
 3 ***** Eval Function Call (10) ****************
 4 nothing2 PC=0x00012520, FP=0xffbef310 [fork_loop_2.cxx#310]
 5 ***** Eval Function Call (9) ****************
 6 nothing2 PC=0x00012520, FP=0xffbef400 [fork_loop_2.cxx#310]
 7 ***** Eval Function Call (8) ****************
 8 nothing2 PC=0x00012520, FP=0xffbef4f0 [fork_loop_2.cxx#310]
 9 ***** Eval Function Call (7) ****************
 10 forker PC=0x00013fd8, FP=0xffbef648 [fork_loop_2.cxx#1120]
 11 fork_wrapper PC=0x00014780, FP=0xffbef6c8 [fork_loop_2.cxx#1278]

...

#
Use dflush to remove the last item pushed onto the stack.
Notice the frame associated with “11” is no longer there
#

d1.<> dflush
d1.<> dwhere
 0 nothing2 PC=0x00012520, FP=0xffbef220 [fork_loop_2.cxx#310]
 1 ***** Eval Function Call (10) ****************
 2 nothing2 PC=0x00012520, FP=0xffbef310 [fork_loop_2.cxx#310]
 3 ***** Eval Function Call (9) ****************
 4 nothing2 PC=0x00012520, FP=0xffbef400 [fork_loop_2.cxx#310]
 5 ***** Eval Function Call (8) ****************
52 TotalView Reference Guide Version 6.2

CLI Commands

dflush
 6 nothing2 PC=0x00012520, FP=0xffbef4f0 [fork_loop_2.cxx#310]
 7 ***** Eval Function Call (7) ****************
 8 forker PC=0x00013fd8, FP=0xffbef648 [fork_loop_2.cxx#1120]
 9 fork_wrapper PC=0x00014780, FP=0xffbef6c8 [fork_loop_2.cxx#1278]

#
Use dflush with a suspened ID argument to remove all frames up to
and including the one associated with suspended ID 9. This means
that 7 and 8 remain.
#

d1.<> dflush 9
Top of call stack after dflush 9
d1.<> dwhere
 0 nothing2 PC=0x00012520, FP=0xffbef400 [fork_loop_2.cxx#310]
 1 ***** Eval Function Call (8) ****************
 2 nothing2 PC=0x00012520, FP=0xffbef4f0 [fork_loop_2.cxx#310]
 3 ***** Eval Function Call (7) ****************
 4 forker PC=0x00013fd8, FP=0xffbef648 [fork_loop_2.cxx#1120]
 5 fork_wrapper PC=0x00014780, FP=0xffbef6c8 [fork_loop_2.cxx#1278]

#
Use dflush -all to remove all frames. Only the frames associated with
the program remain.
#

d1.<> dflush -all
Top of call stack after dflush -all
d1.<> dwhere
 0 forker PC=0x00013fd8, FP=0xffbef648 [fork_loop_2.cxx#1120]
 1 fork_wrapper PC=0x00014780, FP=0xffbef6c8 [fork_loop_2.cxx#1278]
Version 6.2 TotalView Reference Guide 53

2
CLI Commands

dfocus
dfocus Changes the current (Process/Thread P/T) set
Format:

Changes the target of future CLI commands to this P/T set

dfocus p/t-set

Executes a command in this P/T set

dfocus p/t-set command

Arguments:
p/t-set A set of processes and threads. This set defines the target

upon which the CLI commands that follow will act. You can
also use a P/T set filter as one or more of the elements in this
list.

command A CLI command, which when it executes, operates upon its
own local focus.

Description:
The dfocus command changes the set of processes, threads, and groups upon
which a command will act. This command can change the focus for all commands
that follow or just the command that immediately follows.

The dfocus command always expects a P/T value as its first argument. This value
can either be a single arena specifier or a list of arena specifiers. The default focus
is d1.<, which selects the first user thread. The d (for default) indicates that each
CLI command is free to use its own default width.

If you enter an optional command, the focus is set temporarily, and the CLI executes
command in the new focus. After command executes, the CLI restores focus to its orig-
inal value. The command argument can be a single command or a list.

If you use a command argument, dfocus returns the result of the command. If you do
not enter a command, dfocus returns the focus as a string value.

NOTE Instead of a P/T set, you can type a P/T set expression. These expressions are described
in “Using P/T Set Operators” in Chapter 11 of the TotalView Users Guide.
54 TotalView Reference Guide Version 6.2

CLI Commands

dfocus
Command alias:
You may find the following alias useful:

Examples:
dfocus g dgo Continues the TotalView group containing the focus process.

dfocus p3 {dhalt; dwhere}
Stops process 3 and displays backtraces for each of its
threads.

dfocus 2.3 Sets the focus to thread 3 of process 2, where the “2” and the
“3” are TotalView’s process and thread identifier values. The
focus is set to d2.3.

dfocus 3.2
dfocus .5 Sets and then resets command focus. A focus command that

includes a dot and omits the process value tells the CLI to use
the current process. Thus, this sequence of commands
changes the focus to process 3, thread 5 (d3.5).

dfocus g dstep Steps the current group. Note that while the thread of interest
is determined by the current focus, the command acts on the
entire group containing that thread.

dfocus {p2 p3} {dwhere ; dgo}
Performs a backtrace on all threads in processes 2 and 3 and
then tells these processes to execute.

f 2.3 {f p w; f t s; g}
Executes a backtrace (dwhere) on all the threads in process 2,
steps thread 3 in process 2 (without running any other threads
in the process), and continues the process.

dfocus p1 Changes the current focus to include just those threads cur-
rently in process 1. The width is set to process. The CLI sets
the prompt to p1.<.

dfocus a Changes the current set to include all threads in all processes.
When you execute this command, you will notice that your
prompt changes to a1.<. This command alters the CLI’s

Alias Definition Meaning

f {dfocus} Changes the object upon which a com-
mand acts
Version 6.2 TotalView Reference Guide 55

2
CLI Commands

dfocus
behavior so that actions that previously operated on a thread
now apply to all threads in all processes.

dfocus gW dstatus
Displays the status of all worker threads in the control group.
The width is group level and the target is the workers group.

dfocus pW dstatus
Displays the status of all worker threads in the current focus
process. The width is process level and the target is the work-
ers group.

f {breakpoint(a) | watchpoint(a)} st
Shows all threads that are stopped at breakpoints or watch-
points.

f {stopped(a) – breakpoint(a)} st
Shows all stopped threads that are not stopped at break-
points.

You will find many other dfocus examples in Chapter 11 of the TOTALVIEW USERS
GUIDE.
56 TotalView Reference Guide Version 6.2

CLI Commands

dgo
dgo Resumes execution of processes
Format:

dgo

Description:
The dgo command tells all non-held processes and threads in the current focus to
resume execution. If the process does not exist, this command creates it, passing it
the default command arguments. These can be arguments passed into the CLI, or
they can be the arguments set with the drerun command. If you are also using the
TotalView GUI, this value can be set by using the Process > Startup command.

This command has no arguments.

If a process or thread is held, it ignores this command.

You cannot use a dgo command when you are debugging a core file, nor can you
use it before the CLI loads an executable and starts executing it.

Command alias:
You may find the following aliases useful:

Examples:
dgo Resumes execution of all stopped/runnable threads belonging to

processes in the current focus. (Threads held at barriers are
not affected.)

G Resumes execution of all threads in the current control group.

f p g Continues the current process. Only threads that are not held
are actually allowed to run.

f g g Continues all processes in the control group. Only processes
and threads that are not held are allowed to run.

f gL g Continues all threads in the share group that are at the same
PC as the thread of interest.

f pL g Continues all threads in the current process that are at the
same PC as the thread of interest.

f t g Continues a single thread.

Alias Definition Meaning

g {dgo} Resumes execution

G {dfocus g dgo} Group resume
Version 6.2 TotalView Reference Guide 57

2
CLI Commands

dgroups
dgroups Manipulates and manages groups
Format:

Adds members to thread and process groups

dgroups –add [–g gid] [id-list]

Deletes groups

dgroups –delete [–g gid]

Intersects a group with a list of processes and threads

dgroups –intersect [–g gid] [id-list]

Prints process and thread group information

dgroups [–list] [pattern-list]

Creates a new thread or process group

dgroups –new [thread_or_process] [–g gid] [id-list]

Removes members from thread or process groups

dgroups –remove [–g gid] [id-list]

Arguments:
–g gid The group ID upon which the command operates. The gid

value can be an existing numeric group ID, an existing group
name, or, if you are using the –new option, a new group name.

id-list A Tcl list containing process and thread IDs. Process IDs are
integers; for example, “2” indicates process 2. Thread IDs
define a pid.tid pair and look like decimal numbers; for exam-
ple, “2.3” indicates process 2, thread 3. If the first element of
this list is a group tag such as the word control, the CLI
ignores it. This makes it easy to insert all members of an exist-
ing group as the items to be used in any of these operations.
(See the dset command’s discussion of the GROUP(gid) vari-
able for information on group designators.) These words
appear in some circumstances when TotalView returns lists of
elements in P/T sets.

pattern-list A pattern to be matched against group names. The pattern is a
Tcl regular expression.
58 TotalView Reference Guide Version 6.2

CLI Commands

dgroups
thread_or_process Keywords indicating that TotalView will create a new process or
thread group. You can specify one of the following arguments:
t, thread, p, or process.

Description:
The dgroups command lets you perform the following functions:

g Add members to process and thread groups.

g Create a group.

g Intersect a group with a set of processes and threads.

g Delete groups.

g Display the name and contents of groups.

g Remove members from a group.

dgroups –add
The dgroups –add command adds members to one or more thread or process
groups. TotalView adds each of these threads and processes to the group. If you
add a:

g Process to a thread group, TotalView adds all of its threads.

g Thread to a process group, TotalView adds the thread’s parent process.

You can abbreviate –add to –a.

The CLI returns the ID of this group.

The items being added can be explicitly named using an id-list. If you do not use an
id-list, the CLI adds the threads and processes in the current focus. Similarly, you
can name the group to which the CLI adds members if you use the –g option. If you
omit this option, the CLI uses the groups in the current focus.

If id-list contains processes and the target is a thread group, the CLI adds all threads
from these processes. If it contains threads and the target is a process group,
TotalView adds the parent process for each thread.

NOTE If you specify an id-list and use the –g option, the CLI ignores the focus.

Even if you try to add the same object more than once to a group, the CLI only
adds it once.
Version 6.2 TotalView Reference Guide 59

2
CLI Commands

dgroups
TotalView does not let you use this command to add a process to a control group.
If you need to perform this operation, you can add it by using the CGROUP(dpid)
variable. For example:

dset CGROUP($mypid) $new_group_id

dgroups –delete
The dgroups –delete command deletes the target group. You can only delete
groups that you create; you cannot delete groups that TotalView creates.

dgroups –intersect
The dgroups –intersect command intersects a group with a set of processes and
threads. If you intersect a thread group with a process, the CLI uses all of the pro-
cess’s threads. If you intersect a process group with a thread, the CLI uses the
thread’s process.

After this command executes, the group no longer contains members that were not
in this intersection.

You can abbreviate –intersect to –i.

dgroups –list
The dgroups –list command prints the name and contents of process and thread
groups. If you specify a pattern-list as an argument, the CLI only prints information
about groups whose names match this pattern.

When entering a list, you can specify a pattern. The CLI matches this pattern against
TotalView’s list of group names by using the Tcl regex command.

NOTE If you do not enter a pattern, the CLI only displays groups that you have created
which have nonnumeric names.

The CLI returns information from this command; it is not returned.

You can abbreviate –list to –l.

dgroups –new
The dgroups –new command creates a new thread or process group and adds
threads and processes to it. If you use a name with –g, the CLI uses that name for
60 TotalView Reference Guide Version 6.2

CLI Commands

dgroups
the group ID; otherwise, it assigns a new numeric ID. If the group you name already
exists, the CLI replaces it with the newly created group.

The CLI returns the ID of the newly created group.

The items being added can be explicitly named using an id-list. If you do not use an
id-list, the CLI adds the threads and processes in the current focus.

If id-list contains processes and the target is a thread group, the CLI adds all threads
from these processes. If it contains threads and the target is a process group,
TotalView adds the parent process for each thread.

NOTE If you specify an id-list and use the –g option, the CLI ignores the focus.

If you are adding more than one object and one of these objects is a duplicate,
TotalView will add the nonduplicate objects to the group.

You can abbreviate –new to –n.

dgroups –remove
The dgroups –remove command removes members from one or more thread or
process groups. If you ask to remove a process from a thread group, TotalView
removes all of its threads. If you ask to remove a thread from a process group,
TotalView removes its parent process.

You cannot remove processes from a control group. You can, however, move a pro-
cess from one control group to another by using the dset command to assign it to
the CGROUP(dpid) variable group.

Also, you cannot use this command on read-only groups such as share groups.

You can abbreviate –remove to –r.

Command alias:
You may find the following alias useful:

Alias Definition Meaning

gr dgroups Manipulates a group
Version 6.2 TotalView Reference Guide 61

2
CLI Commands

dgroups
Examples:

dgroups –add
f tW gr –add Adds the focus thread to its workers group.

dgroups –add Adds the current focus thread to the current focus group.

set gid [dgroups –new thread ($CGROUP(1))]
Creates a new thread group containing all threads from all pro-
cesses in the control group for process 1.

f $a_group/9 dgroups –add
Adds process 9 to a user-defined group.

dgroups –delete
gr –delete –g mygroup

Deletes mygroup.

dgroups –intersect
dgroups –intersect –g 3 3.2

Intersects thread 3.2 with group 3. If group 3 is a thread group,
this command removes all threads except 3.2 from it; if it is a
process group, this command removes all processes except
process 3 from it.

f tW gr –i Intersects the focus thread with its workers group.

f gW gr –i –g mygroup
Removes all nonworker threads from mygroup.

dgroups –list
dgroups –list Tells TotalView to display information about all named groups.

For example:

ODD_P: {process 1 3}
EVEN_P: {process 2 4}

gr –l * Tells TotalView to display information about groups in the cur-
rent focus.

1: {control 1 2 3 4}
2: {workers 1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 \

3.2 3.3 3.4 4.1 4.2 4.3 4.4}
3: {share 1 2 3 4}
ODD_P: {process 1 3}
EVEN_P: {process 2 4}
62 TotalView Reference Guide Version 6.2

CLI Commands

dgroups
dgroups –new
gr –n t –g mygroup $GROUP($CGROUP(1))

Creates a new thread group named mygroup containing all
threads from all processes in the control group for process 1.

set mygroup [dgroups –new]
Creates a new process group that contains the current focus
process.

dgroups –remove
dgroups –remove –g 3 3.2

Removes thread 3.2 from group 3.

f W dgroups –add
Marks the current thread as being a worker thread.

f W dgroups –r Indicates that the current thread is not a workers thread.
Version 6.2 TotalView Reference Guide 63

2
CLI Commands

dhalt
dhalt Suspends execution of processes
Format:

dhalt

Description:
The dhalt command stops all processes and threads in the current focus. The com-
mand has no arguments.

Command alias:
You may find the following aliases useful:

Examples:
dhalt Suspends execution of all running threads belonging to pro-

cesses in the current focus. (Threads that are held at barriers
are not affected.)

f t 1.1 h Suspends execution of thread 1 in process 1. Note the differ-
ence between this command and f 1.< dhalt. If the focus is
set as thread level, this command will halt the first user thread,
which is probably thread 1.

Alias Definition Meaning

h {dhalt} Suspends execution

H {dfocus g dhalt} Group stop
64 TotalView Reference Guide Version 6.2

CLI Commands

dhold
dhold Holds threads or processes
Format:

Holds processes

dhold –process

Holds threads

dhold –thread

Arguments:
–process Indicates that processes in the current focus will be held. You

can abbreviate –process to –p.

–thread Indicates that threads in the current focus will be held. You can
abbreviate –thread to –t.

Description:
The dhold command holds the threads and processes in the current focus.

NOTE You cannot hold system manager threads.

Command alias:
You may find the following aliases useful:

Examples:
f W HT Holds all worker threads in the focus group.

f s HP Holds all processes in the share group.

f $mygroup/ HP Holds all processes in the group identified by the contents of
mygroup.

Alias Definition Meaning

hp {dhold –process} Holds the focus process

HP {f g dhold –process} Holds all processes in the focus group

ht {f t dhold –thread} Holds the focus thread

HT {f g dhold –thread} Holds all threads in the focus group

htp {f p dhold –thread} Holds all threads in the focus process
Version 6.2 TotalView Reference Guide 65

2
CLI Commands

dkill
dkill Terminates execution of processes
Format:

dkill

Description:
The dkill command terminates all processes in the current focus.

This command has no arguments.

Because the executables associated with the defined processes are still “loaded,”
typing the drun command restarts the processes.

The dkill command alters program state by terminating all processes in the affected
set. In addition, TotalView destroys any spawned processes when the process that
created them is killed. The drun command can only restart the initial process.

Command alias:
You may find the following aliases useful:

Examples:
dkill Terminates all threads belonging to processes in the current

focus.

dfocus {p1 p3} dkill
Terminates all threads belonging to processes 1 and 3.

Alias Definition Meaning

k {dkill} Terminates a process’s execution
66 TotalView Reference Guide Version 6.2

CLI Commands

dlappend
dlappend Appends list elements to a TotalView variable
Format:

dlappend variable-name value [...]

Arguments:
variable-name The variable to which values are being appended.

value The values being appended.

Description:
The dlappend command appends list elements to a TotalView variable. The
dlappend command performs the same functions as the Tcl lappend command,
differing in that dlappend will not create a new debugger variable. That is, the fol-
lowing Tcl command creates a variable named foo:

lappend foo 1 3 5

In contrast, the following command displays an error message:

dlappend foo 1 3 5

Examples:
dlappend TV::process_load_callbacks my_load_callback

Adds the my_load_callback function to the list of functions in
the process_load_callbacks variable.
Version 6.2 TotalView Reference Guide 67

2
CLI Commands

dlist
dlist Displays source code lines
Format:

Displays code relative to the current list location

dlist [–n num-lines]

Displays code relative to a named place

dlist source-loc [–n num-lines]

Displays code relative to the current execution location

dlist –e [–n num-lines]

Arguments:
–n num-lines Requests that this number of lines be displayed rather than

the default value. (The default is the value of the MAX_LIST
variable.) If num-lines is negative, lines before the current loca-
tion are shown, and additional dlist commands will show pre-
ceding lines in the file rather than succeeding lines.

This option also sets the value of the MAX_LIST variable to
num-lines.

source-loc Sets the location at which the CLI begins displaying informa-
tion. This location is specified as a line number or as a string
containing a file name, function name, and line number, each
separated by # characters. For example: file#func#line. For
more information, see “Qualifying Symbol Names” in Chapter 11
of the TOTALVIEW USERS GUIDE. Defaults are constructed if you
omit parts of this specification.

–e Sets the display location to include the current execution
point of the thread of interest. If you used dup and ddown
commands to select a buried stack frame, this location
includes the PC (program counter) for that stack frame.

Description:
The dlist command displays lines relative to a place in the source code. (This posi-
tion is called the list location.) The CLI prints this information; it is not returned. If
neither source-loc nor –e is specified, the command continues where the previous list
command left off. To display the thread’s execution point, use dlist –e.

If you enter a file or procedure name, the listing begins at the file or procedure’s
first line.
68 TotalView Reference Guide Version 6.2

CLI Commands

dlist
The default focus for this command is thread level. If your focus is at process level,
TotalView acts on each thread in the process.

The first time you use the dlist command after you focus on a different thread—or
after the focus thread runs and stops again—the location changes to include the
current execution point of the new focus thread.

Tabs in the source file are expanded as blanks in the output. The tab stop width is
controlled by the TAB_WIDTH variable, which has a default value of 8. If
TAB_WIDTH is set to –1, no tab processing is done, and tabs are displayed using
their ASCII value.

All lines are shown with a line number and the source text for the line. The following
symbols are also used:

@ An action point is set at this line.

> The PC for the current stack frame is at the indicated line and this is the
leaf frame.

= The PC for the current stack frame is at the indicated line and this is a bur-
ied frame; this frame has called another function so that this frame is not
the active frame.

These correspond to the marks shown in the backtrace displayed by dwhere that
indicates the selected frame.

Here are some general rules:

g The initial display location is main().

g The display location is set to the current execution location when the focus is on
a different thread.

If the source-loc argument is not fully qualified, the CLI looks for it in the directories
named in the CLI EXECUTABLE_PATH variable.

Command alias:
You may find the following alias useful:

Alias Definition Meaning

l {dlist} Displays lines
Version 6.2 TotalView Reference Guide 69

2
CLI Commands

dlist
Examples:
These examples assume that MAX_LIST is at its initial value of 20.

dlist Displays 20 lines of source code, beginning at the current list
location. The list location is incremented by 20 when the com-
mand completes.

dlist 10 Displays 20 lines, starting with line 10 of the file corresponding
to the current list location. Because an explicit value was used,
the CLI ignores the previous command. The list location is
changed to line 30.

dlist –n 10 Displays 10 lines, starting with the current list location. The
value of the list location is incremented by 10.

dlist –n –50 Displays source code preceding the current list location; 50
lines are shown, ending with the current source code location.
The list location is decremented by 50.

dlist do_it Displays 20 lines in procedure do_it. The list location is
changed so that it is the 20th line of the procedure.

dfocus 2.< dlist do_it
Displays 20 lines in the routine do_it associated with process
2. If the current source file were named foo, this could also be
specified as dlist foo#do_it, naming the executable for pro-
cess 2.

dlist –e Displays 20 lines starting 10 lines above the current execution
location.

f 1.2 l –e Lists the lines around the current execution location of thread
2 in process 1.

dfocus 1.2 dlist –e –n 10
Produces essentially the same listing as the previous example,
differing in that 10 lines are displayed.

dlist do_it.f#80 –n 10
Displays 10 lines, starting with line 80 in file do_it.f. The list
location is updated to line 90.
70 TotalView Reference Guide Version 6.2

CLI Commands

dload
dload Loads debugging information
Format:

dload [–g gid] [–r hname] [–e] executable

Arguments:
–g gid Sets the control group for the process being added to the

group ID specified by gid. This group must already exist. (The
CLI GROUPS variable contains a list of all groups.)

–r hname The host on which the process will run. The CLI will launch a
TotalView Debugger Server on the host machine if one is not
already running there. See Chapter 5, “Setting Up Parallel Debug-
ging Sessions” of the TOTALVIEW USERS GUIDE for information on
the server launch commands.

–e Tells the CLI that the next argument is a file name. You need to
use this argument if the file name begins with a dash or only
uses numeric characters.

executable A fully or partially qualified file name for the file corresponding
to the program.

Description:
The dload command creates a new TotalView process object for executable. The
dload command returns the TotalView ID for the new object.

Command alias:
You may find the following alias useful:

Examples:
dload do_this Loads the debugging information for executable do_this into

the CLI. After this command completes, the process does not
yet exist and no address space or memory is allocated to it.

lo –g 3 –r other_computer do_this
Loads the debugging information for executable do_this exe-
cuting on the other_computer machine into the CLI. This pro-
cess is placed into group 3.

Alias Definition Meaning

lo {dload} Loads debugging information
Version 6.2 TotalView Reference Guide 71

2
CLI Commands

dload
f g3 lo –r other_computer do_this
Does not do what you would expect it to do because the
dload command ignores the focus command.

dload –g $CGROUP(2) –r slowhost foo
Loads another process based on image foo on machine
slowhost. TotalView places this process in the same group as
process 2.
72 TotalView Reference Guide Version 6.2

CLI Commands

dmstat
dmstat Displays memory use information
Format:

dmstat

Description:
The dmstat command displays information about how your program is using mem-
ory. After you enter this command, the CLI returns memory information. This infor-
mation is displayed in three parts, as follows:

g memory usage summary: Indicates the minimum and maximum amounts of
memory used by the text and data segments, the heap and the stack, as well as
the virtual memory stack usage and the virtual memory size.

g Individual process statistics: Shows the amount of memory that each process is cur-
rently using.

g image information: Lists the name of the image, the image’s text size, the
image’s data size, and the set of processes using the image.

The values shown in the six columns are:

text The amount of memory used to store your program’s machine
code instructions. The “text segment” is sometimes called the
“code segment.”

data The amount of memory used to store initialized data.

heap The amount of memory currently being used for data created
at runtime. The heap is an area of memory that your program
uses when it needs to dynamically allocate memory. For exam-
ple, calls to malloc() allocate space on the heap while free()
releases it.

stack The amount of memory used by the currently executing block
or routines and all the blocks or routines that have invoked it.
For example, if your main routine invokes function foo(), the
stack contains two groups of information—these groups are
called “frames.” The first frame contains the information
required for the execution of your main routine and the sec-
ond, which is the current frame, contains the information
needed by foo(). If foo() invokes bar(), the stack contains
three frames. When foo() finishes executing, the stack only
contains one frame.

stack_vm The logical size of the stack is the difference between the cur-
rent value of the stack pointer and address from which the
Version 6.2 TotalView Reference Guide 73

2
CLI Commands

dmstat
stack originally grew. This value can differ from the size of the
virtual memory mapping in which the stack resides. For exam-
ple, the mapping can be larger than the logical size of the
stack if the process previously had a deeper nesting of proce-
dure calls or made memory allocations on the stack, or it can
be smaller if the stack pointer has advanced but the interme-
diate memory has not been touched.

The value here is this size difference.

vm_size The sum of the sizes of the mappings in the process's address
space.

Examples:
dmstat dmstat is sensitive to the focus, as this example from a four-

process program shows:
 process: text data heap stack [stack_vm] vm_size
 1 (18549): 2257.08K 32.31M 17179869184.00G 9888 [278528] 22.70M

image information:
image_name text data dpids

....ry/forked_mem_exampleLINUX 5048 33556958 1
/lib/i686/libpthread.so.0 64344 55896 1

/lib/i686/libc.so.6 2101376 244676 1
/lib/ld-linux.so.2 140480 21626 1

dfocus a dmstat The CLI prints the following on a four-process program:

 process: text data heap stack [stack_vm] vm_size
 1 (18549): 2257.08K 32.31M 17179869184.00G 9888 [278528] 22.70M
 2 (18550): 2257.08K 32.31M 17179869183.99G 534192 [540672] 17.94M
 3 (18551): 2257.08K 32.31M 17179869183.99G 796336 [802816] 18.19M
 4 (18552): 2257.08K 32.31M 17179869183.99G 1033.67K [1040.00K] 18.44M

maximum:
 1 (18549): 2257.08K 32.31M 17179869184.00G 9888 [278528] 22.70M
minimum
 2 (18550): 2257.08K 32.31M 17179869183.99G 534192 [540672] 17.94M

image information:
image_name text data dpids

....ry/forked_mem_exampleLINUX 5048 33556958 1 2 3 4
/lib/i686/libpthread.so.0 64344 55896 1 2 3 4

/lib/i686/libc.so.6 2101376 244676 1 2 3 4
/lib/ld-linux.so.2 140480 21626 1 2 3 4
74 TotalView Reference Guide Version 6.2

CLI Commands

dnext
dnext Steps source lines, stepping over subroutines
Format:

dnext [num-steps]

Arguments:
num-steps An integer greater than 0, indicating the number of source

lines to be executed.

Description:
The dnext command executes source lines; that is, it advances the program by
steps (source line statements). However, if a statement in a source line invokes a
routine, dnext executes the routine as if it were one statement; that is, it steps over
the call.

The optional num-steps argument tells the CLI how many dnext operations it should
perform. If you do not specify num-steps, the default is 1.

The dnext command iterates over the arenas in its focus set, performing a thread-
level, process-level, or group-level step in each arena, depending on the width of
the arena. The default width is process (p).

For more information on stepping in processes and threads, see dstep on page
100.

Command alias:
You may find the following aliases useful:

Alias Definition Meaning

n {dnext} Runs the thread of interest one statement while
allowing other threads in the process to run.

N {dfocus g dnext} A group stepping command. This searches for
threads in the share group that are at the same PC
as the thread of interest, and steps one such
“aligned” thread in each member one statement.
The rest of the control group runs freely.
Version 6.2 TotalView Reference Guide 75

2
CLI Commands

dnext
Examples:
dnext Steps one source line.

n 10 Steps ten source lines.

N Steps one source line. It also runs all other processes in the
group that are in the same lockstep group to the same line.

f t n Steps the thread one statement.

dfocus 3. dnext
Steps process 3 one step.

nl {dfocus L dnext} Steps the process threads in “lockstep.” This steps
the thread of interest one statement and runs all
threads in the process that are at the same PC as
the thread of interest to the same statement. Other
threads in the process run freely. The group of
threads that are at the same PC is called the lockstep
group.

This alias does not force process width. If the
default focus is set to group, this steps the group.

NL {dfocus gL dnext} Steps “lockstep” threads in the group. This steps all
threads in the share group that are at the same PC
as the thread of interest one statement. Other
threads in the control group run freely.

nw {dfocus W dnext} Steps worker threads in the process. This steps the
thread of interest one statement, and runs all
worker threads in the process to the same (goal)
statement. The nonworker threads in the process
run freely.

This alias does not force process width. If the
default focus is set to group, this steps the group.

NW {dfocus gW dnext} Steps worker threads in the group. This steps the
thread of interest one statement, and runs all
worker threads in the same share group to the
same statement. All other threads in the control
group run freely.

Alias Definition Meaning
76 TotalView Reference Guide Version 6.2

CLI Commands

dnexti
dnexti Steps machine instructions, stepping over subroutines
Format:

dnexti [num-steps]

Arguments:
num-steps An integer greater than 0, indicating the number of instruc-

tions to be executed.

Description:
The dnexti command executes machine-level instructions; that is, it advances the
program by a single instruction. However, if the instruction invokes a subfunction,
dnexti executes the subfunction as if it were one instruction; that is, it steps over
the call. This command steps the thread of interest while allowing other threads in
the process to run.

The optional num-steps argument tells the CLI how many dnexti operations it should
perform. If you do not specify num-steps, the default is 1.

The dnexti command iterates over the arenas in the focus set, performing a thread-
level, process-level, or group-level step in each arena, depending on the width of
the arena. The default width is process (p).

For more information on stepping in processes and threads, see dstep on page
100.

Command alias:
You may find the following aliases useful:

Alias Definition Meaning

ni {dnexti} Runs the thread of interest one instruction while
allowing other threads in the process to run.

NI {dfocus g dnexti} A group stepping command. This searches for
threads in the share group that are at the same PC
as the thread of interest, and steps one such
“aligned” thread in each member one instruction.
The rest of the control group runs freely.
Version 6.2 TotalView Reference Guide 77

2
CLI Commands

dnexti
Examples:
dnexti Steps one machine-level instruction.

ni 10 Steps ten machine-level instructions.

NI Steps one instruction and runs all other processes in the
group that were executing at that instruction to the next
instruction as well.

f t n Steps the thread one machine-level instruction.

dfocus 3. dnexti
Steps process 3 one machine-level instruction.

nil {dfocus L dnexti} Steps the process threads in “lockstep.” This steps
the thread of interest one instruction, and runs all
threads in the process that are at the same PC as
the thread of interest to the same statement.
Other threads in the process run freely. The group
of threads that are at the same PC is called the
lockstep group.

This alias does not force process width. If the
default focus is set to group, this steps the group.

NIL {dfocus gL dnexti} Steps “lockstep” threads in the group. This steps
all threads in the share group that are at the same
PC as the thread of interest one instruction. Other
threads in the control group run freely.

niw {dfocus W dnexti} Steps worker threads in the process. This steps the
thread of interest one instruction, and runs all
worker threads in the process to the same (goal)
statement. The nonworker threads in the process
run freely.

This alias does not force process width. If the
default focus is set to group, this steps the group.

NIW {dfocus gW dnexti} Steps worker threads in the group. This steps the
thread of interest one instruction, and runs all
worker threads in the same share group to the
same statement. All other threads in the control
group run freely.

Alias Definition Meaning
78 TotalView Reference Guide Version 6.2

CLI Commands

dout
dout Runs out from the current subroutine
Format:

dout [frame-count]

Arguments:
frame-count An integer that specifies that the thread return out of this

many levels of subroutine calls. If you omit this number, the
thread returns from the current level.

Description:
The dout command runs a thread until it returns:

g From the current subroutine.

g From one or more nested subroutines.

When process width is specified, TotalView allows all threads in the process that are
not running to this goal to run free. Note that specifying process width is the
default.

Command alias:
You may find the following aliases useful:

Alias Definition Meaning

ou {dout} Runs the thread of interest out of the current func-
tion while allowing other threads in the process to
run.

OU {dfocus g dout} A group stepping command. This searches for
threads in the share group that are at the same PC
as the thread of interest, and runs one such
“aligned” thread in each member out of the cur-
rent function. The rest of the control group runs
freely.
Version 6.2 TotalView Reference Guide 79

2
CLI Commands

dout
For additional information on the different kinds of stepping, see the dstep on
page 100 command information.

Examples:
f t ou Runs the current thread of interest out of the current

subroutine.

f p dout 3 Unwinds the process in the current focus out of the current
subroutine to the routine three levels above it in the call stack.

oul {dfocus L dout} Runs the process threads in “lockstep.” This runs
the thread of interest out of the current function,
and also runs all threads in the process that are at
the same PC as the thread of interest out of the
current function. Other threads in the process run
freely. The group of threads that are at the same
PC is called the lockstep group.

This alias does not force process width. If the
default focus is set to group, this steps the group.

OUL {dfocus gL dout} Runs “lockstep” threads in the group. This runs all
threads in the share group that are at the same PC
as the thread of interest out of the current func-
tion. Other threads in the control group run freely.

ouw {dfocus W dout} Runs worker threads in the process. This runs the
thread of interest out of the current function and
runs all worker threads in the process to the same
(goal) statement. The nonworker threads in the
process run freely.

This alias does not force process width. If the
default focus is set to group, this steps the group.

OUW {dfocus gW dout} Runs worker threads in the group. This runs the
thread of interest out of the current function and
also runs all worker threads in the same share
group out of the current function. All other threads
in the control group run freely.

Alias Definition Meaning
80 TotalView Reference Guide Version 6.2

CLI Commands

dprint
dprint Evaluates and displays information
Format:

Prints the value of a variable

dprint [–nowait] variable

Prints the value of an expression

dprint [–nowait] expression

Arguments:
-nowait Tells TotalView to evaluate the expression in the background.

You will need to use TV::expr to obtain the results as they are
not displayed.

variable A variable whose value will be displayed. The variable can be
local to the current stack frame or it can be global. If the vari-
able being displayed is an array, you can qualify the variable’s
name with a slice that tells the CLI to display a portion of the
array,

expression A source-language expression to be evaluated and printed.
Because expression must also conform to Tcl syntax, you must
quote it if it includes any blanks, and it must be enclosed in
braces ({}) if it includes brackets ([]), dollar signs ($), quote
characters ("), or any other Tcl special characters.

Description:
The dprint command evaluates and displays a variable or an expression. The CLI
interprets the expression by looking up the values associated with each symbol and
applying the operators. The result of an expression can be a scalar value or an
aggregate (array, array slice, or structure).

If an event such as a $stop, SEGV, breakpoint, or the like occurs, the dprint com-
mand throws an exception describing the event. The first exception subcode
returned by TV::errorCodes is the susp-eval-id (a suspension-evaluation-ID). You can
use this to manipulate suspended evaluations with the dflush and TV::expr
commands.

If you use –nowait, TotalView evaluates the expression in the background. It also
returns a susp-eval-id that you can use to obtain the results of the evaluation.

As the CLI displays data, it passes the data through a simple more processor that
prompts you after it displays each screen of text. At this time, you can press the
Version 6.2 TotalView Reference Guide 81

2
CLI Commands

dprint
Enter key to tell the CLI to continue displaying information. Entering q tells the CLI
to stop printing this information.

Since the dprint command can generate a considerable amount of output, you may
want to use the capture command described on page 21 to save the output into a
variable.

Structure output appears with one field printed per line. For example:

sbfo = {
 f3 = 0x03 (3)
 f4 = 0x04 (4)
 f5 = 0x05 (5)
 f20 = 0x000014 (20)
 f32 = 0x00000020 (32)
}

Arrays are printed in a similar manner. For example:

foo = {
 [0][0] = 0x00000000 (0)
 [0][1] = 0x00000004 (4)
 [1][0] = 0x00000001 (1)
 [1][1] = 0x00000005 (5)
 [2][0] = 0x00000002 (2)
 [2][1] = 0x00000006 (6)
 [3][0] = 0x00000003 (3)
 [3][1] = 0x00000007 (7)
}

You can append a slice to the variable’s name to tell the CLI that it should display a
portion of an array. For example:

d.1<> p {master_array[::10]}
master_array(::10) = {
(1) = 1 (0x00000001)
(11) = 1331 (0x00000533)
(21) = 9261 (0x0000242d)
(31) = 29791 (0x0000745f)
(41) = 68921 (0x00010d39)
(51) = 132651 (0x0002062b)
(61) = 226981 (0x000376a5)
82 TotalView Reference Guide Version 6.2

CLI Commands

dprint
(71) = 357911 (0x00057617)
(81) = 531441 (0x00081bf1)
(91) = 753571 (0x000b7fa3)

}

Note that the slice was placed within {} symbols. This prevents Tcl from trying to
evaluate the information in the [] characters. You could, of course, instead escape
the brackets; for example, \[\].

The CLI evaluates the expression or variable in the context of each thread in the
target focus. Thus, the overall format of dprint output is as follows:

first process or thread:
expression result

second process or thread:
expression result

...

last process or thread:
expression result

You can also use the dprint command to obtain values for your computer’s regis-
ters. For example, on most architectures, $r1 is register 1. You would obtain the
contents of this register by typing:

dprint \$r1

Notice that you must quote the $ since the name of the register’s name includes
the $. This $ is not the standard indicator that tells Tcl to fetch a variable’s value.
Chapter 12, “Architectures” on page 251 lists the mnemonic names assigned to
registers.

NOTE Do not use a $ when asking dprint to display your program’s variables.

Command alias:
You may find the following alias useful:

Alias Definition Meaning

p {dprint} Evaluates and displays information
Version 6.2 TotalView Reference Guide 83

2
CLI Commands

dprint
Examples:
dprint scalar_y

Displays the values of variable scalar_y in all processes and
threads in the current focus.

p argc Displays the value of argc.

p argv Displays the value of argv, along with the first string to which it
points.

p {argv[argc-1]}
Prints the value of argv[argc-1]. If the execution point is in
main(), this is the last argument passed to main().

dfocus p1 dprint scalar_y
Displays the values of variable scalar_y for the threads in pro-
cess 1.

f 1.2 p arrayx Displays the values of the array arrayx for just the second
thread in process 1.

for {set i 0} {$i < 100} {incr i} {p argv\[$i\]}
If main() is in the current scope, prints the program’s argu-
ments followed by the program’s environment strings.

f {t1.1 t2.1 t3.1} dprint {f()}
The dprint command evaluates a function contained within
three threads. Note that each thread is in a different process:

Thread 1.1:
f(): 2
Thread 2.1:
f(): 3
Thread 3.1:
f(): 5

f {t1.1 t2.1 t3.1} dprint -nowait {f()}
1 This example evaluates a function without waiting. At a later

time, the results are obtained using TV::expr. The number dis-
played immediately after the command, which is “1”, is the
susp-eval-id. Here is how this is done:

f t1.1 TV::expr get 1 result
2

84 TotalView Reference Guide Version 6.2

CLI Commands

dprint
f t2.1 TV::expr get 1 result
Thread 1.1:
f(): 2
Thread 2.1:
f(): 3
Thread 3.1:
f(): 5
3
f t3.1 TV::expr get 1 result
5

Version 6.2 TotalView Reference Guide 85

2
CLI Commands

dptsets
dptsets Shows status of processes and threads
Format:

dptsets [ptset_array] ...

Arguments:
ptset_array An optional array that indicates the P/T sets that will be

shown. An element of the array can be a number or it can be a
more complicated P/T expression. For more information, see
“Using P/T Set Operators” in Chapter 11 of the TOTALVIEW USERS
GUIDE.

Description:
The dptsets command shows the status of each process and thread in a Tcl array of
P/T expressions. These array elements are P/T expressions (see Chapter 11 of the
TOTALVIEW USERS GUIDE) and the elements' array indices are strings that label each
element's section in the output. Using this array syntax is explored in the Examples
section.

If you do not use the optional ptset_array argument, the CLI supplies a default array
containing all P/T set designators. These designators are error, existent, held,
running, stopped, unheld, and watchpoint.

Examples:
The following command displays information about processes and threads in the
current focus:

d.1<> dptsets
unheld:
1: 808694 Stopped [fork_loopSGI]

1.1: 808694.1 Stopped PC=0x0d9cae64
1.2: 808694.2 Stopped PC=0x0d9cae64
1.3: 808694.3 Stopped PC=0x0d9cae64
1.4: 808694.4 Stopped PC=0x0d9cae64

existent:
1: 808694 Stopped [fork_loopSGI]

1.1: 808694.1 Stopped PC=0x0d9cae64
1.2: 808694.2 Stopped PC=0x0d9cae64
1.3: 808694.3 Stopped PC=0x0d9cae64
1.4: 808694.4 Stopped PC=0x0d9cae64
86 TotalView Reference Guide Version 6.2

CLI Commands

dptsets
watchpoint:

running:

held:

error:

stopped:
1: 808694 Stopped [fork_loopSGI]

1.1: 808694.1 Stopped PC=0x0d9cae64
1.2: 808694.2 Stopped PC=0x0d9cae64
1.3: 808694.3 Stopped PC=0x0d9cae64
1.4: 808694.4 Stopped PC=0x0d9cae64

...

The following example creates a two-element P/T set array, and then displays the
results. Notice the labels in this example.

d1.<> set set_info(0) breakpoint(1)
breakpoint(1)
d1.<> set set_info(1) stopped(1)
stopped(1)
d1.<> dptsets set_info
0:
1: 892484 Breakpoint [arraysSGI]

1.1: 892484.1 Breakpoint PC=0x10001544, [arrays.F#81]

1:
1: 892484 Breakpoint [arraysSGI]

1.1: 892484.1 Breakpoint PC=0x10001544, [arrays.F#81]

The array index to set_info becomes a label identifying the kind of information
being displayed. In contrast, the information within parentheses in the breakpoint
and stopped functions identify the arena for which the function will return
information.

Using numbers as array indices almost ensures that you will not remember what is
being printed. The following almost identical example shows a better way to use
these array indices.
Version 6.2 TotalView Reference Guide 87

2
CLI Commands

dptsets
d1.<> set set_info(my_breakpoints) breakpoint(1)
breakpoint(1)
d1.<> set set_info(my_stopped) stopped(1)
stopped(1)
d1.<> dptsets set_info
my_stopped:
1: 882547 Breakpoint [arraysSGI]

1.1: 882547.1 Breakpoint PC=0x10001544, [arrays.F#81]

my_breakpoints:
1: 882547 Breakpoint [arraysSGI]

1.1: 882547.1 Breakpoint PC=0x10001544, [arrays.F#81]

The following commands also create a two-element array. It differs in that the sec-
ond element is the difference between three P/T sets.

d.1<> set mystat(system) a–gW
d.1<> set mystat(reallystopped) \

stopped(a)–breakpoint(a)–watchpoint(a)
d.1<> dptsets t mystat
system:
Threads in process 1 [regress/fork_loop]:
1.-1: 21587.[-1] Running PC=0x3ff805c6998
1.-2: 21587.[-2] Running PC=0x3ff805c669c
...
Threads in process 2 [regress/fork_loop.1]:
2.-1: 15224.[-1] Stopped PC=0x3ff805c6998
2.-2: 15224.[-2] Stopped PC=0x3ff805c669c
...

reallystopped:
2.2: 15224.2 Stopped PC=0x3ff800d5758
2.-1: 15224.[-1] Stopped PC=0x3ff805c6998
2.-2: 15224.[-2] Stopped PC=0x3ff805c669c
...
88 TotalView Reference Guide Version 6.2

CLI Commands

drerun
drerun Restarts processes
Format:

drerun [cmd_args][in_operation infile]
[out_operations outfile]
[error_operations errfile]

Arguments:
cmd_args The arguments to be used for restarting a process.

operations The in_operation, out_operations, and error_operations are dis-
cussed in the Description section.

infile If specified, indicates a file from which the launched processes
will read information.

outfile If specified, indicates the file into which the launched pro-
cesses will write information.

errfile If specified, indicates the file into which the launched pro-
cesses will write error information.

Description:
The drerun command restarts the process that is in the current focus set from its
beginning. The drerun command uses the arguments stored in the ARGS and
ARGS_DEFAULT variables. These are set every time the process is run with different
arguments. Consequently, if you do not specify the arguments to be used when
restarting the process, the CLI uses the arguments specified when the process was
previously run. (See drun on page 93 for more information.)

The dererun command differs from the drun command in that

g If you do not specify an argument, drerun uses the default values. In contrast,
the drun command clears the argument list for the program. This means that you
cannot use an empty argument list with the drerun command to tell the CLI to
restart a process and expect that no arguments will be used.

g If the process already exists, drun will not restart it. (If you must use the drun
command, you must first kill the process.) In contrast, the drerun command will
kill and then restart the process.

The arguments to this command are similar to the arguments used in the Bourne
shell.

The in_operation is follows:

< infile Reads from infile instead of stdin.
Version 6.2 TotalView Reference Guide 89

2
CLI Commands

drerun
The out_operations are as follows:

> outfile Sends output to outfile instead of stdout.

>& outfile Sends output and error messages to outfile instead of stdout
and stderr.

>>& outfile Appends output and error messages to outfile.

>> outfile Appends output to outfile.

The error_operations are:

2> errfile Sends error messages to errfile instead of stderr.

2>>errfile Appends error messages to errfile.

Command alias:
You may find the following alias useful:

Examples:
drerun Reruns the current process. Because arguments are not used,

the process is restarted using its previous values.

rr –firstArg an_argument –aSecondArg a_second_argument
Reruns the current process. The default arguments are not
used because replacement arguments are specified.

Alias Definition Meaning

rr {drerun} Restarts processes
90 TotalView Reference Guide Version 6.2

CLI Commands

drestart
drestart Restarts a checkpoint (SGI only)
Format:

drestart [process-state] [–no_unpark] [–g gid] [–r host]
[–ask_attach_parallel | –no_attach_parallel]
[–no_preserve_ids] checkpoint-name

Arguments:
process_state Defines the state of the process both before and after the

checkpoint. If you do not specify a process state, parallel pro-
cesses are held immediately after the place where the check-
point occurred. The CLI attaches to these created parallel
processes. You can use one of the following options:

–detach While TotalView starts checkpointed process, it does not
attach to them.

–go TotalView starts checkpointed parallel processes and attaches
to them.

–halt TotalView stops checkpointed processes after it restarts them.

–no_unpark Indicates that the checkpoint was created outside of TotalView
or that you used the dcheckpoint command’s –no_park
option when you created the checkpoint file.

–g gid Names the control group into which TotalView places all cre-
ated processes.

–r host Names the remote host upon which the restart will occur.

–ask_attach_parallel
Asks if the CLI should automatically attach to the parallel pro-
cesses being created. This is most often used in procedures.

–no_attach_parallel
Tells TotalView to attach only to the base process. That is, the
CLI will not attach to the parallel processes being created.

–no_preserve_ids Tells TotalView that it should use new IDs after it restarts the
processes. If you omit this option, TotalView causes the pro-
cess to use the same process, group, session, or ash IDs after
restarting.

checkpoint-name The name used when the checkpoint file was saved.

Description:
The drestart command restores and restarts all of the checkpointed processes. By
default, the CLI will attach to the base process. Here are some of your choices.
Version 6.2 TotalView Reference Guide 91

2
CLI Commands

drestart
g If there are parallel processes related to this base process, TotalView will attach
to them.

g If you do not want the CLI to automatically attach to these parallel processes,
use the –no_attach_parallel option.

g If you do not know if there are parallel processes, if you want the user to decide,
or if you are using this command within a Tcl procedure, you should use the
–ask_parallel_process option.

Examples:
drestart check1

Restarts the processes checkpointed in the check1 file. The
CLI automatically attaches to parallel processes.

drestart –no_unpark check1
Restarts the processes checkpointed in the check1 file. This
file was either created outside of TotalView or it was created
using the –no_park option.
92 TotalView Reference Guide Version 6.2

CLI Commands

drun
drun Starts or restarts processes
Format:

drun [cmd_arguments] [in_operation infile]
[out_operations outfile]
[error_operations errfile]

Arguments:
cmd_arguments The argument list passed to the process.

operations The in_operation, out_operations, and error_operations are dis-
cussed in the Description section.

infile If specified, indicates a file from which the launched processes
will read information.

outfile If specified, indicates the file into which the launched pro-
cesses will write information.

errfile If specified, indicates the file into which the launched pro-
cesses will write error information.

Description:
The drun command launches each process in the current focus and starts it run-
ning. The command arguments are passed to the processes, and I/O redirection for
the program, if specified, will occur. Later in the session, you can use the drerun
command to restart the program.

The arguments to this command are similar to the arguments used in the Bourne
shell.

The in_operation is as follows:

< infile Reads from infile instead of stdin.

The out_operations are as follows:

> outfile Sends output to outfile instead of stdout.

>& outfile Sends output and error messages to outfile instead of stdout
and stderr.

>>& outfile Appends output and error messages to outfile.

>> outfile Appends output to outfile.
Version 6.2 TotalView Reference Guide 93

2
CLI Commands

drun
The error_operations are:

2> errfile Sends error messages to errfile instead of stderr.

2>>errfile Appends error messages to errfile.

In addition, the CLI uses the following variables to hold the default argument list for
each process.

ARGS_DEFAULT The CLI sets this variable if you use the –a command-line
option when you started the CLI or TotalView. (This option
passes command-line arguments that TotalView will use when
it invokes a process.) This variable holds the default arguments
that TotalView passes to a process when the process has no
default arguments of its own.

ARGS(n) An array variable containing the command-line arguments.
The index n is the process ID n. This variable holds a process’s
default arguments. It is always set by the drun command, and
it also contains any arguments you used when executing a
drerun command.

If more than one process is launched with a single drun command, each receives
the same command-line arguments.

In addition to setting these variables by using the –a command-line option or specify-
ing cmd_arguments when you use this or the drerun command, you can modify these
variables directly with the dset and dunset commands.

You can only use this command to tell TotalView that it should execute initial pro-
cesses because TotalView cannot directly run processes that your program spawns.
When you enter this command, the initial process must be have terminated; if it
was not terminated, you are told to kill it and retry. (You can, of course, use the
drerun command.)

The first time you use the drun command, TotalView copies arguments to program
variables. It also sets up any requested I/O redirection. If you reenter this command
for processes that TotalVIew previously started—or issued for the first time for a
process that was attached to using the dattach command—the CLI reinitializes
your program.
94 TotalView Reference Guide Version 6.2

CLI Commands

drun
Issues With Using IBM’s poe

Both poe and the CLI can interfere with one another because each believes that it
owns stdin. Because poe is trying to manage stdin on behalf of your processes, it
continually reads from stdin, acquiring all characters that it sees. This means that
the CLI will never see these characters. If your target process does not use stdin,
you can use the –stdinmode none option. Unfortunately, this option is incompati-
ble with poe’s –cmdfile option that is used when specifying –pgmmodel mpmd.

If you encounter these problems, you should redirect stdin within the CLI. For
example:

drun < in.txt

Command alias:
You may find the following alias useful:

Examples:
drun Tells the CLI to begin executing processes represented in the

current focus.

f {p2 p3} drun Begins execution of processes 2 and 3.

f 4.2 r Begins execution of process 4. Note that this is the same as f
4 drun.

dfocus a drun Restarts execution of all processes known to the CLI. If they
were not previously killed, you are told to use the dkill com-
mand and then try again.

drun < in.txt Restarts execution of all processes in the current focus, set-
ting them up to get standard input from file in.txt.

Alias Definition Meaning

r {drun} Starts or restarts processes
Version 6.2 TotalView Reference Guide 95

2
CLI Commands

dset
dset Changes or views CLI variables
Format:

Changes a CLI variable

dset debugger-var value

Views current CLI variables

dset [debugger-var]

Sets the default for a CLI variable

dset -set_as_default debugger-var value

Arguments:
debugger-var Name of a CLI variable.

value Value to be assigned to debugger-var.

-set_as_default Set the value to be used as the variable’s default. This option
is most often used by system administrators to set site-spe-
cific defaults in the global .tvdrc startup script. Values set
using this option replace the Etnus-supplied default.

Description:
The dset command sets the value of CLI debugger variables. You’ll find a listing and
description of CLI and TotalView variables in Chapter 4, “TotalView Variables” on
page 161.

If you type dset with no arguments, the CLI displays the names and current values
for all TotalView CLI variables in the global namespace. If you use only one argu-
ment, the CLI returns and displays the variable’s value.

The second argument defines the value that will replace a variable’s previous value.
It must be enclosed in quotes if it contains more than one word.

If you do not use an argument, the CLI only displays variables in the current
namespace. To show all variables in a namespace, just enter the namespace name
immediately followed by a double colon; for example, TV::.

You can use an asterisk (*) as a wildcard to indicate that the CLI should match more
than one string; for example, TV::g* matches all variables beginning with g in the
TV namespace. For example, to view all variables in the TV:: namespace, you would
enter:
96 TotalView Reference Guide Version 6.2

CLI Commands

dset
dset TV::

or:

dset TV::GUI::

The rightmost double colons are required when obtaining listings for a namespace.
If you omit them, Tcl assumes that you are requesting information on a variable. For
example, dset TV::GUI looks for a variable named GUI in the TV namespace.

Examples:
dset PROMPT "Fixme% "

Sets the prompt to be Fixme% followed by a space.

dset * Displays all CLI variables and their current settings.

dset VERBOSE Displays the current setting for output verbosity.

dset EXECUTABLE_PATH ../test_dir;$EXECUTABLE_PATH
Places ../test_dir at the beginning of the previous value for the
executable path.

dset -set_as_default TV::server_launch_string \
{/use/this/one/tvdsvr}

Sets the default value of the TV::server_launch_string. If a
user changes this value in any way, the user will be able to
select the Defaults button within the File > Preferences’s
Launch String Page to reset it to this value.

dset TV::GUI::fixed_font_size 12
Sets the TotalView GUI so that it displays fixed fonts using a 12
font. Commands such as this are often found in a startup file.
Version 6.2 TotalView Reference Guide 97

2
CLI Commands

dstatus
dstatus Shows current status of processes and threads
Format:

dstatus

Description:
The dstatus command prints information about the current state of each process
and thread in the current focus. The ST command is an alias for dfocus g dstatus,
and acts as a group-status command.

This command has no arguments.

If you have not changed the focus, the default width is process. In this case, dstatus
shows the status for each thread in process 1. In contrast, if you set the focus to
g1.<, the CLI displays the status for every thread in the control group containing
process 1.

Command alias:
You may find the following aliases useful:

Examples:
dstatus Displays the status of all processes and threads in the current

focus. For example:

1: 42898 Breakpoint [arraysAIX]
1.1: 42898.1 Breakpoint \

PC=0x100006a0, [./arrays.F#87]

f a st Displays the status for all threads in all processes.

f p1 st Displays the status of the threads associated with process 1. If
the focus is at its default (d1.<), this is the same as typing st.

Alias Definition Meaning

st {dstatus} Shows current status

ST {dfocus g dstatus} Group status
98 TotalView Reference Guide Version 6.2

CLI Commands

dstatus
ST Displays the status of all processes and threads in the control
group containing the focus process. For example:

1: 773686 Stopped [fork_loop_64]
1.1: 773686.1 Stopped PC=0x0d9cae64
1.2: 773686.2 Stopped PC=0x0d9cae64
1.3: 773686.3 Stopped PC=0x0d9cae64
1.4: 773686.4 Stopped PC=0x0d9cae64
1.5: 773686.5 Stopped PC=0x0d9cae64

2: 779490 Stopped [fork_loop_64.1]
2.1: 779490.1 Stopped PC=0x0d9cae64
2.2: 779490.2 Stopped PC=0x0d9cae64
2.3: 779490.3 Stopped PC=0x0d9cae64
2.4: 779490.4 Stopped PC=0x0d9cae64
2.5: 779490.5 Stopped PC=0x0d9cae64

f W st Shows status for all worker threads in the focus set. If the
focus is set to d1.<, the CLI shows the status of each worker
thread in process 1.

f W ST Shows status for all worker threads in the control group asso-
ciated with the current focus.

In this case, TotalView merges the W and g specifiers in the ST
alias. The results is the same as if you had entered f gW st.

f L ST Shows status for every thread in the share group that is at the
same PC as the thread of interest.
Version 6.2 TotalView Reference Guide 99

2
CLI Commands

dstep
dstep Steps lines, stepping into subfunctions
Format:

dstep [num-steps]

Arguments:
num-steps An integer greater than 0, indicating the number of source

lines to be executed.

Description:
The dstep command executes source lines; that is, it advances the program by
steps (source lines). If a statement in a source line invokes a subfunction, dstep
steps into the function.

The optional num-steps argument tells the CLI how many dstep operations it should
perform. If you do not specify num-steps, the default is 1.

The dstep command iterates over the arenas in the focus set by doing a thread-
level, process-level, or group-level step in each arena, depending on the width of
the arena. The default width is process (p).

If the width is process, the dstep command affects the entire process containing
the thread to be stepped. Thus, while only one thread is stepped, all other threads
contained in the same process also resume executing. In contrast, the dfocus t
dstep command tells the CLI that it should just step the thread of interest.

NOTE On systems having identifiable manager threads, the “dfocus t dstep” command
allows the manager threads to run as well as the thread of interest.

The action taken on each term in the focus list depends on whether its width is
thread, process, or group, and on the group specified in the current focus. (If you
do not explicitly specify a group, the default is the control group.)

If some thread hits an action point other than the goal breakpoint during a step
operation, that ends the step.

thread width

Only the thread of interest is allowed to run. (This is not supported on all systems.)

process width (default)

The behavior depends on the group specified in the arena.

Process group TotalView allows the entire process to run, and execution con-
tinues until the thread of interest arrives at its goal location.
100 TotalView Reference Guide Version 6.2

CLI Commands

dstep
TotalView plants a temporary breakpoint at the goal location
while this command executes. If another thread reaches this
goal breakpoint first, your program continues to execute until
the thread of interest reaches the goal.

Thread group TotalView runs all threads in the process that are in that group
to the same goal as the thread of interest. If a thread arrives at
the goal that is not in the group of interest, it also stops there.
The group of interest specifies the set of threads for which
TotalView will wait. This means that the command does not
complete until all threads in the group of interest are at the
goal.

group width

The behavior depends on the group specified in the arena.

Process group TotalView examines that group and identifies each process
having a thread stopped at the same location as the thread of
interest. One matching thread from each matching process is
selected. TotalView then runs all processes in the group and
waits until the thread of interest arrives at its goal location;
each selected thread also arrives there.

Thread group The behavior is similar to process width behavior except that
all processes in the program control group will run, rather than
just the process of interest. Regardless of what threads are in
the group of interest, TotalView only waits for threads that are
in the same share group as the thread of interest. This is
because it is not useful to run threads executing in different
images to the same goal.

Command alias:
You may find the following aliases useful:

Alias Definition Meaning

s {dstep} Runs the thread of interest one statement while
allowing other threads in the process to run.

S {dfocus g dstep} A group stepping command. This searches for
threads in the share group that are at the same PC
as the thread of interest, and steps one such
“aligned” thread in each member one statement.
The rest of the control group runs freely.
Version 6.2 TotalView Reference Guide 101

2
CLI Commands

dstep
Examples:
dstep Executes the next source line, stepping into any procedure call

that is encountered. While only the current thread is stepped,
other threads in the process run.

s 15 Executes the next 15 source lines.

f p1.2 dstep Steps thread 2 in process 1 by one source line. This also
resumes execution of all threads in process 1; they are halted
as soon as thread 2 in process 1 executes its statement.

f t1.2 s Steps thread 2 in process 1 by one source line. No other
threads in process 1 execute.

sl {dfocus L dstep} Steps the process threads in “lockstep.” This steps
the thread of interest one statement, and runs all
threads in the process that are at the same PC as
the thread of interest to the same (goal) state-
ment. Other threads in the process run freely. The
group of threads that are at the same PC is called
the lockstep group.

This alias does not force process width. If the
default focus is set to group, this steps the group.

SL {dfocus gL dstep} Steps “lockstep” threads in the group. This steps
all threads in the share group that are at the same
PC as the thread of interest one statement. Other
threads in the control group run freely.

sw {dfocus W dstep} Steps worker threads in the process. This steps the
thread of interest one statement, and runs all
worker threads in the process to the same (goal)
statement. The nonworker threads in the process
run freely. This alias does not force process width.
If the default focus is set to group, this steps the
group.

SW {dfocus gW dstep} Steps worker threads in the group. This steps the
thread of interest one statement, and runs all
worker threads in the same share group to the
same (goal) statement. All other threads in the
control group run freely.

Alias Definition Meaning
102 TotalView Reference Guide Version 6.2

CLI Commands

dstepi
dstepi Steps machine instructions, stepping into subfunctions
Format:

dstepi [num-steps]

Arguments:
num-steps An integer greater than 0, indicating the number of instruc-

tions to be executed.

Description:
The dstepi command executes assembler instruction lines; that is, it advances the
program by single instructions.

The optional num-steps argument tells the CLI how many dstepi operations it should
perform. If you do not specify num-steps, the default is 1.

For more information, see dstep on page 100.

Command alias:
You may find the following aliases useful:

Alias Definition Meaning

si {dstepi} Runs the thread of interest one instruction while
allowing other threads in the process to run.

SI {dfocus g dstepi} A group stepping command. This searches for
threads in the share group that are at the same PC
as the thread of interest, and steps one such
“aligned” thread in each member one instruction.
The rest of the control group runs freely.

sil {dfocus L dstepi} Steps the process threads in “lockstep.” This steps
the thread of interest one instruction, and runs all
threads in the process that are at the same PC as
the thread of interest to the same instruction.
Other threads in the process run freely. The group
of threads that are at the same PC is called the
lockstep group.

This alias does not force process width. If the
default focus is set to group, this steps the group.
Version 6.2 TotalView Reference Guide 103

2
CLI Commands

dstepi
Examples:
dstepi Executes the next machine instruction, stepping into any pro-

cedure call that is encountered. While only the current thread
is stepped, other threads in the process are allowed to run.

si 15 Executes the next 15 instructions.

f p1.2 dstepi Steps thread 2 in process 1 by one instruction and resumes
execution of all other threads in process 1; they are halted as
soon as thread 2 in process 1 executes its instruction.

f t1.2 si Steps thread 2 in process 1 by one instruction. No other
threads in process 1 execute.

SIL {dfocus gL dstepi} Steps “lockstep” threads in the group. This steps
all threads in the share group that are at the same
PC as the thread of interest one instruction. Other
threads in the control group run freely.

siw {dfocus W dstepi} Steps worker threads in the process. This steps the
thread of interest one instruction, and runs all
worker threads in the process to the same (goal)
statement. The nonworker threads in the process
run freely.

This alias does not force process width. If the
default focus is set to group, this steps the group.

SIW {dfocus gW dstepi} Steps worker threads in the group. This steps the
thread of interest one instruction, and runs all
worker threads in the same share group to the
same statement. All other threads in the control
group run freely.

Alias Definition Meaning
104 TotalView Reference Guide Version 6.2

CLI Commands

dunhold
dunhold Releases a held process or thread
Format:

Releases a process

dunhold –process

Releases a thread

dunhold –thread

Arguments:
–process Indicates that TotalView should release processes in the cur-

rent focus. You can abbreviate the –process argument to –p.

–thread Indicates that TotalView should release threads in the current
focus. You can abbreviate the –thread to –t.

Description:
The dunhold command releases the threads or processes in the current focus.
Note that system manager threads cannot be held or released.

Command alias:
You may find the following aliases useful:

Examples:
f w uhtp Unholds all worker threads in the focus process.

htp; uht Holds all threads in the focus process except the thread of
interest.

Alias Definition Meaning

uhp {dfocus p dunhold -process} Releases the process of interest

UHP {dfocus g dunhold -process} Releases the processes in the focus
group

uht {dfocus t dunhold –thread} Releases the thread of interest

UHT {dfocus g dunhold –thread} Releases all threads in the focus group

uhtp {dfocus p dunhold –thread} Releases the threads in the current
process
Version 6.2 TotalView Reference Guide 105

2
CLI Commands

dunset
dunset Restores default settings for variables
Format:

Restores a CLI variable to its default value

dunset debugger-var

Restores all CLI variables to their default values

dunset –all

Arguments:
debugger-var Name of the CLI variable whose default setting is being

restored.

–all Restores the default settings of the CLI variables.

Description:
The dunset command reverses the effects of any previous dset commands, restor-
ing CLI variables to their default settings. See Chapter 4, “TotalView Variables” on
page 161 for information on these variables.

Tcl variables (those created with the Tcl set command) are, of course, unaffected by
this command.

If you use the –all option, the dunset command affects all changed CLI variables,
restoring them to the settings that existed when the CLI session began. Similarly,
specifying debugger-var tells the CLI to restore that one variable.

Examples:
dunset PROMPT Restores the prompt string to its default setting; that is,

{[dfocus]>}.

dunset –all Restores all CLI variables to their default settings.
106 TotalView Reference Guide Version 6.2

CLI Commands

duntil
duntil Runs the process until a target place is reached
Format:

Runs to a line

duntil line-number

Runs to an address

duntil –address addr

Runs into a function

duntil proc-name

Arguments:
line-number A line number in your program.

–address addr An address in your program.

proc-name The name of a procedure, function, or subroutine in your
program.

Description:
The duntil command runs the thread of interest until execution reaches a line or
absolute address, or until it enters a function.

If you use a process or group width, all threads in the process or group that are not
running to the goal are allowed to run. If one of the “secondary” threads arrives at
the goal before the thread of interest, it continues running, ignoring this goal. In
contrast, if you specify thread width, only the thread of interest runs.

The duntil command differs from other step commands when you apply it to a
group.

Process group TotalView runs the entire group, and the CLI waits until all pro-
cesses in the group have at least one thread that has arrived at
the goal breakpoint. This lets you sync up all the processes in a
group in preparation for group-stepping them.

Thread group TotalView runs the process (for p width) or the control group
(for g width) and waits until all the running threads in the
group of interest arrive at the goal.

The differences between this command and other stepping commands are:

g Process Group Operation: TotalView examines the thread of interest to see if it
is already at the goal. If it is, TotalView does not run the process of interest.
Version 6.2 TotalView Reference Guide 107

2
CLI Commands

duntil
Similarly, TotalView examines all other processes in the share group, and it only
runs processes that do not have a thread at the goal. It also runs members of the
control group that are not in the share group.

g Group-Width Thread Group Operation: TotalView identifies all threads in the
entire control group that are not at the goal. Only those threads are run. While
TotalView runs share group members in which all worker threads are already at
the goal, it does not run the workers. TotalView also runs processes in the control
group that are outside the share group. The duntil command operation ends
when all members of the focus thread group are at the goal.

g Process-Width Thread Group Operation: TotalView identifies all threads in
the entire focus process that are not already at the goal. Only those threads run.
The duntil command operation ends when all threads in the process that are
also members of the focus group arrive at the goal.

Command alias:
You may find the following aliases useful:

Alias Definition Meaning

un {duntil} Runs the thread of interest until it reaches a target
while allowing other threads in the process to run.

UN {dfocus g duntil} Runs the entire control group until every process
in the share group has at least one thread at the
goal. Processes have a thread at the goal do not
run.

unl {dfocus L duntil} Runs the thread of interest until it reaches the tar-
get, and runs all threads in the process that are at
the same PC as the thread of interest to the same
target. Other threads in the process run freely. The
group of threads that are at the same PC is called
the lockstep group.

This does not force process width. If the default
focus is set to group, this runs the group.

UNL {dfocus gL duntil} Runs “lockstep” threads in the share group until
they reach the target. Other threads in the control
group are allowed to run freely.
108 TotalView Reference Guide Version 6.2

CLI Commands

duntil
Examples:
UNW 580 Lines up all worker threads at line 580.

un buggy_subr Runs to the start of the buggy_subr routine.

unw {dfocus W duntil} Runs worker threads in the process to a target. The
nonworker threads in the process run freely.

This does not force process width. If the default
focus is set to group, this runs the group.

UNW {dfocus gW duntil} Runs worker threads in the same share group to a
target. All other threads in the control group run
freely.

Alias Definition Meaning
Version 6.2 TotalView Reference Guide 109

2
CLI Commands

dup
dup Moves up the call stack
Format:

dup [num-levels]

Arguments:
num-levels Number of levels to move up. The default is 1.

Description:
The dup command moves the current stack frame up one or more levels. It also
prints the new frame number and function.

Call stack movements are all relative, so dup effectively “moves up” in the call
stack. (“Up” is in the direction of main().)

Frame 0 is the most recent—that is, currently executing—frame in the call stack,
frame 1 corresponds to the procedure that invoked the currently executing one,
and so on. The call stack’s depth is increased by one each time a procedure is
entered, and decreased by one when it is exited. The effect of dup is to change the
context of commands that follow. For example, moving up one level lets you access
variables that are local to the procedure that called the current routine.

Each dup command updates the frame location by adding the appropriate number
of levels.

The dup command also modifies the current list location to be the current execu-
tion location for the new frame, so a subsequent dlist displays the code surround-
ing this location. Entering dup 2 (while in frame 0) followed by a dlist, for instance,
displays source lines centered around the location from which the current routine’s
parent was invoked. These lines will be in frame 2.

Command alias:
You may find the following alias useful:

Alias Definition Meaning

u {dup} Moves up the call stack
110 TotalView Reference Guide Version 6.2

CLI Commands

dup
Examples:
dup Moves up one level in the call stack. As a result, subsequent

dlist commands refer to the procedure that invoked this one.
After this command executes, it displays information about
the new frame. For example:

1 check_fortran_arrays_ PC=0x10001254,
FP=0x7fff2ed0 [arrays.F#48]

dfocus p1 u 5 Moves up five levels in the call stack for each thread involved
in process 1. If fewer than five levels exist, the CLI moves up as
far as it can.
Version 6.2 TotalView Reference Guide 111

2
CLI Commands

dwait
dwait Blocks command input until the target processes stop
Format:

dwait

Description:
The dwait command tells the CLI to wait for all threads in the current focus to stop
or exit. Generally, this command treats the focus identically to other CLI
commands.

If you interrupt this command—typically by entering Ctrl+C—the CLI manually
stops all processes in the current focus before it returns.

This command has no arguments.

Unlike most other CLI commands, this command blocks additional CLI input until
the blocking action is complete.

Examples:
dwait Blocks further command input until all processes in the cur-

rent focus have stopped (that is, none of their threads are still
running).

dfocus {p1 p2} dwait
Blocks command input until processes 1 and 2 stop.
112 TotalView Reference Guide Version 6.2

CLI Commands

dwatch
dwatch Defines a watchpoint
Format:

Defines a watchpoint for a variable

dwatch variable [–length byte-count] [–g | –p | –t]
[[–l lang] –e expr] [–t type]

Defines a watchpoint for an address

dwatch –address addr –length byte-count [–g | –p | –t]
[[–l lang] –e expr] [–t type]

Arguments:
variable A symbol name corresponding to a scalar or aggregate identi-

fier, an element of an aggregate, or a dereferenced pointer.

–address addr An absolute address in the file.

–length byte-count The number of bytes to watch. If a variable is named, the
default is the variable’s byte length.

If you are watching a variable, you only need to specify the
amount of storage to watch if you want to override the default
value.

–g Tells TotalView to stop all processes in the process’s control
group when the watchpoint is hit.

–p Tells TotalView to stop the process that hit this watchpoint.

–t Tells TotalView to stop the thread that hit this watchpoint.

–l lang Specifies the language used when you are writing an
expression. The values you can use for lang are c, c++, f7,
f9, and asm, for C, C++, FORTRAN 77, Fortran-9x, and
assembler, respectively. If you do not use a language code,
TotalView picks one based on the variable's type. If only an
address is used, TotalView uses the C language.

Not all languages are supported on all systems.

–e expr When the watchpoint is triggered, evaluates expr in the con-
text of the thread that hit the watchpoint. In most cases,
you need to enclose the expression in braces ({ }).

–t type The data type of $oldval/$newval in the expression.
Version 6.2 TotalView Reference Guide 113

2
CLI Commands

dwatch
Description:
A dwatch command defines a watchpoint on a memory location where the speci-
fied variables are stored. The watchpoint triggers whenever the value of the vari-
ables changes. The CLI returns the ID of the newly created watchpoint.

NOTE Watchpoints are not available on Alpha Linux and HP.

The default action is controlled by the STOP_ALL variable.

The watched variable can be a scalar, array, record, or structure object, or a refer-
ence to a particular element in an array, record, or structure. It can also be a deref-
erenced pointer variable.

The CLI lets you obtain a variable’s address in the following two ways if your appli-
cation demands that you specify a watchpoint with an address instead of a variable
name:

g dprint &variable

g dwhat variable

The dprint command displays an error message if the variable is in a register.

NOTE Chapter 14 of the TotalView Users Guide contains additional information on watch-
points.

If you do not use the –length modifier, the CLI uses the length attribute from the
program’s symbol table. This means that the watchpoint applies to the data object
named; that is, specifying the name of an array lets you watch all elements of the
array. Alternatively, you can specify that a certain number of bytes be watched,
starting at the named location.

NOTE In all cases, the CLI watches addresses. If you specify a variable as the target of a
watchpoint, the CLI resolves the variable to an absolute address. If you are watching a local
stack variable, the position being watched is just where the variable happened to be when
space for the variable was allocated.

The focus establishes the processes (not individual threads) for which the watch-
point is in effect.

The CLI prints a message showing the action point identifier, the location being
watched, the current execution location of the triggering thread, and the identifier
of the triggering threads.
114 TotalView Reference Guide Version 6.2

CLI Commands

dwatch
One possibly confusing aspect of using expressions is that their syntax differs from
that of Tcl. This is because you will need to embed code written in Fortran, C, or
assembler within Tcl commands. In addition, your expressions will often include
TotalView built-in functions.

Command alias:
You may find the following alias useful:

Examples:
For these examples, assume that the current process set at the time of the dwatch
command consists only of process 2, and that p is a global variable that is a
pointer.

dwatch *p Watches the address stored in pointer p at the time the watch-
point is defined, for changes made by process 2. Only process
2 is stopped. Note that the watchpoint location does not
change when the value of p changes.

dwatch {*p} Performs the same action as the previous example. Because
the argument to dwatch contains a space, Tcl requires that
you place the argument within braces.

dfocus {p2 p3} wa *p
Watches the address pointed to by p in processes 2 and 3.
Because this example does not contain either a –p or –g
option, the value of the STOP_ALL variable lets the CLI know if
it should stop processes or groups.

dfocus {p2 p3 p4} dwatch –p *p
Watches the address pointed to by p in processes 2, 3, and 4.
The –p option indicates that only the process triggering the
watchpoint is stopped.

wa * aString –length 30 –e {goto $447}
Watches 30 bytes of data beginning at the location pointed to
by aString. If any of these bytes change, execution control
transfers to line 447.

Alias Definition Meaning

wa {dwatch} Defines a watchpoint
Version 6.2 TotalView Reference Guide 115

2
CLI Commands

dwatch
wa my_vbl –type long –e {if ($newval == 0x11ffff38) $stop;}
Watches the my_vbl variable and triggers when 0x11ffff38 is
stored into it.

wa my_vbl –e {if (my_vbl == 0x11ffff38) $stop;}
Performs the same function as the previous example. Note
that this tests the variable directly rather than by using
$newval.
116 TotalView Reference Guide Version 6.2

CLI Commands

dwhat
dwhat Determines what a name refers to
Format:

dwhat symbol-name

Arguments:
symbol-name Fully or partially qualified name specifying a variable, proce-

dure, or other source code symbol.

Description:
The dwhat command tells the CLI to display information about a named entity in a
program. The displayed information contains the name of the entity and a descrip-
tion of the name. The examples that follow show many of the kinds of elements
that this command can display.

NOTE To view information on CLI variables or aliases, you need to use the dset or alias
commands.

The focus constrains the query to a particular context.

The default width for this command is thread (t).

Command alias:
You may find the following alias useful:

Examples:
These examples show what the CLI displays when you enter one of the indicated
commands.

dprint timeout timeout = {
tv_sec = 0xc0089540 (-1073179328)
tv_usec = 0x000003ff (1023)

}

dwhat timeout In thread 1.1:

Name: timeout; Type: struct timeval; Size: 8
bytes; Addr: 0x11fffefc0

Scope: #fork_loop.cxx#snore \
(Scope class: Any)

Address class: auto_var (Local variable)

Alias Definition Meaning

wh {dwhat} Determines what a name refers to
Version 6.2 TotalView Reference Guide 117

2
CLI Commands

dwhat
wh timeval In process 1:

Type name: struct timeval; Size: 8 bytes; \
Category: Structure

Fields in type:
{
tv_sec time_t (32 bits)
tv_usec int (32 bits)
}

dlist 20 float field3_float;
21 double field3_double;
22 en_check en1;
23
24 };
25
26 main ()
27 {
28 en_check vbl;
29 check_struct s_vbl;
30 > vbl = big;
31 s_vbl.field2_char = 3;
32 return (vbl + s_vbl.field2_char);
33 }

p vbl vbl = big (0)

wh vbl In thread 2.3:

Name: vbl; Type: enum en_check; \
Size: 4 bytes; Addr: Register 01

Scope: #check_structs.cxx#main \
(Scope class: Any)

Address class: register_var (Register \

variable)

wh en_check In process 2:

Type name: enum en_check; Size: 4 bytes; \
Category: Enumeration

Enumerated values:
big = 0
little = 1
fat = 2
thin = 3
118 TotalView Reference Guide Version 6.2

CLI Commands

dwhat
p s_vbl s_vbl = {
field1_int = 0x800164dc (-2147392292)
field2_char = '\377' (0xff, or -1)
field2_chars = "\003"
<padding> = '\000' (0x00, or 0)
field3_int = 0xc0006140 (-1073716928)
field2_uchar = '\377' (0xff, or 255)
<padding> = '\003' (0x03, or 3)
<padding> = '\000' (0x00, or 0)
<padding> = '\000' (0x00, or 0)

field_sub = {
field1_int = 0xc0002980 (-1073731200)
<padding> = '\377' (0xff, or -1)
<padding> = '\003' (0x03, or 3)
<padding> = '\000' (0x00, or 0)
<padding> = '\000' (0x00, or 0)
field2_long = 0x0000000000000000 (0)

...
}

wh s_vbl In thread 2.3:

Name: s_vbl; Type: struct check_struct; \
Size: 80 bytes; Addr: 0x11ffff240

Scope: #check_structs.cxx#main \
(Scope class: Any)

Address class: auto_var (Local variable)

wh check_struct In process 2:

Type name: struct check_struct; \
Size: 80 bytes; Category: Structure

Fields in type:
{
field1_int int (32 bits)
field2_char char (8 bits)
field2_chars <string>[2] (16 bits)
<padding> <char> (8 bits)
field3_int int (32 bits)
field2_uchar unsigned char (8 bits)
<padding> <char>[3] (24 bits)
field_sub struct sub_struct(320 bits){
Version 6.2 TotalView Reference Guide 119

2
CLI Commands

dwhat
field1_int int (32 bits)
<padding> <char>[4] (32 bits)
field2_long long (64 bits)
field2_ulong unsigned long (64 bits)
field3_uint unsigned int (32 bits)
en1 enum en_check (32 bits)
field3_double double (64 bits)

}
...

}
120 TotalView Reference Guide Version 6.2

CLI Commands

dwhere
dwhere Displays locations in the call stack
Format:

dwhere [num-levels] [–a]

Arguments:
num-levels Restricts output to this number of levels of the call stack. If

you omit this option, the CLI shows all levels in the call stack.

–a Displays argument names and values in addition to program
location information. If you omit this option, arguments are
not shown.

Description:
The dwhere command prints the current execution locations and the call stacks—
or sequences of procedure calls—which led to that point. Information is shown for
threads in the current focus, with the default being to show information at the
thread level.

Arguments control the amount of command output in two ways:

g The num-levels argument lets you control how many levels of the call stacks are
displayed, counting from the uppermost (most recent) level. If you omit this
argument, the CLI shows all levels in the call stack. Showing all levels is the
default.

g The –a option tells the CLI that it should also display procedure argument names
and values for each stack level.

A dwhere command with no arguments or options displays the call stacks for all
threads in the target set.

The MAX_LEVELS variable contains the default maximum number of levels the CLI
will display when you don’t use the num-levels argument.

Output is generated for each thread in the target focus.

Command alias:
You may find the following alias useful:

Alias Definition Meaning

w {dwhere} Displays the current location
Version 6.2 TotalView Reference Guide 121

2
CLI Commands

dwhere
Examples:
dwhere Displays the call stacks for all threads in the current focus.

dfocus 2.1 dwhere 1
Displays just the most recent level of the call stack corre-
sponding to thread 1 in process 2. This shows just the immedi-
ate execution location of a thread or threads.

w 1 –a Displays the current execution locations (one level only) of
threads in the current focus together with the names and val-
ues of any arguments that were passed into the current
procedures.

f p1.< w 5 Displays the most recent five levels of the call stacks for all
threads involved in process 1. If the depth of any call stack is
less than five levels, all of its levels are shown.

This command is a slightly more complicated way of saying f
p1 w 5 because specifying a process width tells dwhere to
ignore the thread indicator.
122 TotalView Reference Guide Version 6.2

CLI Commands

dworker
dworker Adds or removes a thread from a workers group
Format:

dworker { number | boolean }

Arguments:
number If positive, marks the thread of interest as a worker thread by

inserting it into the workers group.

boolean If true, marks the thread of interest as a worker thread by
inserting it into the workers group. If false, marks the thread as
being a nonworker thread by removing it from the workers
group.

Description:
The dworker command inserts or removes a thread from the workers group.

If number is 0 or false, this command marks the thread of interest as a nonworker
thread by removing it from the workers group. If number is true or is a positive value,
this command marks the thread of interest as a worker thread by inserting it in the
workers group.

Note that moving a thread into or out of the workers group has no effect on
whether the thread is a “manager” thread. Manager threads are threads that are
created by the pthreads package to manage other threads; they never execute user
code, and cannot normally be controlled individually. TotalView automatically
inserts all threads that are not manager threads into the workers group.

Command alias:
You may find the following aliases useful:

Alias Definition Meaning

wof {dworker false} Removes the focus thread from the workers group

wot {dworker true} Inserts the focus thread into the workers group
Version 6.2 TotalView Reference Guide 123

2
CLI Commands

exit
exit Terminates the debugging session
Format:

exit [–force]

Arguments:
–force Tells the CLI that TotalView should exit without asking

permission.

Description:
The exit command terminates the TotalView session.

After executing this command, the CLI asks if it is all right to exit. If you answer yes,
TotalView exits. If you had entered the CLI from the TotalView GUI, this command
also closes the GUI window.

NOTE Press Ctrl+D to exit from the CLI window without exiting from TotalView.

Any processes and threads that were created by the CLI are destroyed. Any pro-
cesses that existed prior to the debugging session (that is, were attached by the CLI
as part of a dattach operation) are detached and left executing.

The exit and quit commands are interchangeable; they both do exactly the same
thing.

Examples:
exit Exits from the CLI, leaving any “attached” processes running.
124 TotalView Reference Guide Version 6.2

CLI Commands

help
help Displays help information
Format:

help [topic]

Arguments:
topic The topic or command for which the CLI prints information.

Description:
The help command prints information about the specified topic or command. If
you do no use an argument, the CLI displays a list of the topics for which help is
available.

If more than one screen of data would be displayed, the CLI fills the screen with
data and then displays a more prompt. You can then press Enter to see more data or
enter q to return to the CLI prompt.

After you type a topic name, the CLI attempts to complete what you type. The help
command also allows you to enter one of the CLI’s built-in aliases. For example:

d1.<> he a
Ambiguous help topic "a". Possible matches:

alias accessors arguments addressing_expressions
d1.<> he ac
"ac" has been aliased to "dactions":
dactions [bp-ids ...] [-at <source-loc>] [-disabled | \

-enabled]
Default alias: ac

...
d1.<> he acc

The following commands provide access to the properties
of TotalView objects:
...

You can use the capture command to place help information into a variable.

Command alias:
You may find the following aliases useful:

Examples:
help help Prints information describing the help command.

Alias Definition Meaning

he {help} Displays help information
Version 6.2 TotalView Reference Guide 125

2
CLI Commands

quit
quit Terminates the debugging session
Format:

quit [–force]

Arguments:
–force Tells the CLI that it should close all TotalView processes with-

out asking permission.

Description:
The quit command terminates the CLI session.

The exit command terminates the TotalView session.

After executing the quit command, the CLI asks if it is all right to exit. If you answer
yes, TotalView exits. If you had entered the CLI from the TotalView GUI, this com-
mand also closes the GUI window.

NOTE Enter Ctrl+D to exit from the CLI window without exiting from TotalView.

Any processes and threads that were created by the CLI are destroyed. Any pro-
cesses that existed prior to the debugging session (that is, were attached by the CLI
as part of a dattach operation) are detached and left executing.

The quit and exit commands are interchangeable; they both do exactly the same
thing.

Examples:
quit Exits the CLI, leaving any “attached” processes running (in the

run-time environment).
126 TotalView Reference Guide Version 6.2

CLI Commands

stty
stty Sets terminal properties
Format:

stty [stty-args]

Arguments:
stty-args One or more UNIX stty command arguments as defined in the

man page for your operating system.

Description:
The CLI stty command executes a UNIX stty command on the tty associated with
the CLI window. This lets you set all of your terminal’s properties. However, this is
most often used to set erase and kill characters.

If you start the CLI from a terminal by using the totalviewcli command, the stty
command alters this terminal’s environment. Consequently, the changes you make
using this command are retained in the terminal after you exit.

If you omit stty-args, the CLI displays information describing your current settings.

The output from this command is returned as a string.

Examples:
stty Prints information about your terminal settings. The informa-

tion printed is the same as if you had entered stty while inter-
acting with a shell.

stty –a Prints information about all of your terminal settings.

stty erase ^H Sets the erase key to Backspace.

stty sane Resets the terminal’s settings to values that the shell thinks
they should be. If you are having problems with command-line
editing, use this command. (The sane option is not available in
all environments.)
Version 6.2 TotalView Reference Guide 127

2
CLI Commands

unalias
unalias Removes a previously defined alias
Format:

Removes an alias

unalias alias-name

Removes all aliases

unalias –all

Arguments:
alias-name The name of the alias being deleted.

–all Tells the CLI to remove all aliases.

Description:
The unalias command removes a previously defined alias. You can delete all aliases
by using the –all option. Aliases defined in the tvdinit.tvd file are also deleted.

Examples:
unalias step2 Removes the step2 alias; step2 is now undefined and can no

longer be used. If step2 was included as part of the definition
of another command, that command will no longer work cor-
rectly. However, the CLI will only display an error message
when you try to execute the alias that contains this removed
alias.

unalias –all Removes all aliases.
128 TotalView Reference Guide Version 6.2

Version 6.2
Chapter 3
CLI Namespace Commands
This chapter contains detailed descriptions of CLI namespace commands.

Command Overview
This section lists all of the CLI namespace commands. It also contains a short
explanation of what each command does.

Accessor Functions
The following functions, all within the TV:: namespace, access and set TotalView
properties:

g actionpoint: Accesses and sets action point properties.

g expr: Manipulates values created by the dprint –nowait command.

g focus_groups: Returns a list containing the groups in the current focus.

g focus_processes: Returns a list of processes in the current focus.

g focus_threads: Returns a list of threads in the current focus.

g group: Accesses and sets group properties.

g process: Accesses and sets process properties.

g thread: Accesses and sets thread properties.

g type: Accesses and sets data type properties.

The following functions are discussed in the CREATING TYPE TRANSFORMATIONS
GUIDE:
TotalView Reference Guide 129

3
CLI Namespace Commands

Command Overview
g scope

g symbol

g type_transformation

Helper Functions
The following functions, all within the TV:: namespace, are most often used in
scripts:

g dec2hex: Converts a decimal number into hexadecimal format.

g errorCodes: Returns or raises TotalView error information.

g hex2dec: Converts a hexadecimal number into decimal format.

g respond: Sends a response to a command.

g source_process_startup: “Sources” a .tvd file when a process is loaded.
130 TotalView Reference Guide Version 6.2

CLI Namespace Commands

actionpoint
actionpoint Sets and gets action point properties
Format:

TV::actionpoint action [object-id] [other-args]

Arguments:
action The action to perform, as follows:

commands Displays the subcommands that you can use. The CLI
responds by displaying the four subcommands shown here.
No other arguments are used with this subcommand.

get Retrieves the values of one or more action point properties.
The other-args argument can include one or more property
names. The CLI returns values for these properties in a list
whose order is the same as the property names you entered.

If you use the –all option as the object-id, the CLI returns a list
containing one (sublist) element for each object.

properties Lists the action point properties that TotalView can access. No
other arguments are used with this subcommand.

set Sets the values of one or more properties. The other-args argu-
ment contains property name and value pairs.

object-id An identifier for the action point.

other-args Are arguments that the get and set actions use.

Description:
The TV::actionpoint command lets you examine and set action point properties
and states. These states and properties are:

address The address of the action point.

enabled A value (either 1 or 0) indicating if the action point is enabled.
A value of 1 means enabled. (settable)

expression The expression to be executed at an action point. (settable)

id The ID of the action point.

language The language in which the action point expression is written.

length The length in bytes of a watched area. This property is only
valid for watchpoints. (settable)

line The source line at which the action point is set. This is not
valid for watchpoints.
Version 6.2 TotalView Reference Guide 131

3
CLI Namespace Commands

actionpoint
satisfaction_group The group that must arrive at a barrier for the barrier to be sat-
isfied. (settable)

share A value (either 1 or 0) indicating if the action point is active in
the entire share group. A value of 1 means that it is. (settable)

stop_when_done Indicates what is stopped when a barrier is satisfied (in addi-
tion to the satisfaction set). Values are process, group, or
none. (settable)

stop_when_hit Indicates what is stopped when an action point is hit (in addi-
tion to the thread that hit the action point). Values are
process, group, or none. (settable)

type The object’s type. See type_values for a list of possible types.

type_values Lists values that can be assigned to the type property: break,
eval, process_barrier, thread_barrier, and watch.

Examples:
TV::actionpoint set 5 share 1 enable 1

Shares and enables action point 5.

f p3 TV::actionpoint set –all enable 0
Disables all the action points in process 3.

foreach p [TV::actionpoint properties] {
puts [format “%20s %s” $p: [TV::actionpoint get 1 $p]]

Dumps all the properties for action point 1. Here is what your
output might look like:

address: 0x1200019a8
enabled: 0

expression:
id: 1

language:
length:
line: /temp/arrays.F#84

satisfaction_group:
satisfaction_process:
satisfaction_width:

share: 1
stop_when_done:
stop_when_hit: group

type: break
type_values: break eval process_barrier

thread_barrier watch
132 TotalView Reference Guide Version 6.2

CLI Namespace Commands

dec2hex
dec2hex Converts a decimal number into hexadecimal
Format:

TV::dec2hex number

Arguments:
number A decimal number.

Description:
The TV::dec2hex command converts a decimal number into hexadecimal. This
command correctly manipulates 64-bit values, regardless of the size of a long on
the host system.
Version 6.2 TotalView Reference Guide 133

3
CLI Namespace Commands

errorCodes
errorCodes Returns or raises TotalView error information
Format:

Returns a list of all error code tags

TV::errorCodes

Returns or raises error information

TV::errorCodes number_or_tag [–raise [message]]

Arguments:
number_or_tag Enters an error code mnemonic tag or its numeric value.

–raise Raises the corresponding error. If you append a message,
TotalView returns this string. Otherwise, TotalView uses the
human-readable string for the error.

message An optional string used when raising an error.

Description:
The TV::errorCodes command lets you manipulate the TotalView error code infor-
mation placed in the Tcl errorCodes variable. The CLI sets this variable after every
command error. Its value is intended to be easy to parse in a Tcl script.

When the CLI or TotalView returns an error, errorCode is set to a list whose format
is:

TOTALVIEW error-code subcodes... string

The contents of this lists are as follows:

g The first list element is always TOTALVIEW.

g The second is always the error code.

g subcodes are not used at this time.

g The last element is a string describing the error.

With a tag or number, this command returns a list containing the mnemonic tag, the
numeric value of the tag, and the string associated with the error.

The –raise option tells the CLI to raise an error. If you add a message, that message
is used as the return value; otherwise, the CLI uses its textual explanation for the
error code. This provides an easy way to return TotalView-style errors from a script.
134 TotalView Reference Guide Version 6.2

CLI Namespace Commands

errorCodes
Examples:
foreach e [TV::errorCodes] {

 puts [eval format {"%20s %2d %s"} [TV::errorCodes $e]]}
Displays a list of all TotalView error codes.
Version 6.2 TotalView Reference Guide 135

3
CLI Namespace Commands

expr
expr Manipulates values created by dprint –nowait
Format:

TV::expr action [susp-eval-id] [other-args]

Arguments:
action The action to perform, as follows:

commands Displays the subcommands that you can use. The CLI re-
sponds by displaying the subcommands shown here. Do not
use additional arguments with this subcommand.

delete Deletes all data associated with a suspended ID. If you use this
command, you can specify an other-args argument. If you spec-
ify –done, the CLI deletes the data for all completed expres-
sions; that is, those where TV::expr get susp-eval-id done
returns 1. If you specify –all, the CLI deletes all data for all
expressions.

get Gets the values of one or more expr properties. The other-args
argument can include one or more values. The CLI returns
these values in a list whose order is the same as the property
names.

If you use the –all option as an object-id, the CLI returns a list
containing one (sublist) element for each object.

properties Displays the properties that the CLI can access. Do not use
additional arguments with this option.

susp-eval-id The ID returned or thrown by the dprint command or printed
by the dwhere command.

other-args Arguments required by the delete subcommand, as just
discussed.

Description:
The TV::expr command, in addition to showing you command information, returns
and deletes values returned by a dprint –nowait command. The properties that
you can use for this command are:

done TV::expr returns 1 if the process associated with susp-eval-id
has finished in all focus threads. Otherwise, it returns 0.

expression The expression to execute.

focus_threads A list of dpid.dtid values in which the expression is being
executed.
136 TotalView Reference Guide Version 6.2

CLI Namespace Commands

expr
id The susp-eval-id of the object.

initially_suspended_process
A list of dpid’s for the target processes that received control
because they executed the function calls or compiled code.
You can wait for processes to complete by entering:

dfocus p dfocus [TV::expr get susp-eval-id \
initially_suspended_processes] dwait

result A list of pairs for each thread in the current focus. Each pair
contains the thread as the first element and that thread’s
result string as the second element. For example:

d1.<> dfocus {1.1 2.1} TV::expr get susp-eval-id result
{{1.1 2} {2.1 3}}

d1.<>

The result of expression susp-eval-id in thread 1.1 is 2 and in
thread 2.1 is 3:

status A list of pairs for each thread in the current focus. Each pair
contains the thread ID as the first element and that thread’s
status string as the second element. The possible status
strings are:

done, suspended, and {error diag}

For example, if expression susp-eval-id finished in thread 1.1,
suspended on a breakpoint in thread 2.1, and received a syn-
tax error in thread 3.1, that expression's status property has
the following value when TV::expr is focused on threads 1.1,
2.1, and 3.1:

d1.<> dfocus {t1.1 t2.1 t3.1} TV::expr get 1 status
{1.1 done} {2.1 suspended} {3.1 {error {Symbol
nothing2 not found}}}
d1.<>
Version 6.2 TotalView Reference Guide 137

3
CLI Namespace Commands

focus_groups
focus_groups Returns a list of groups in the current focus
Format:

TV::focus_groups

Description:
The TV::focus_groups command returns a list of all groups in the current focus.

Examples:
f d1.< TV::focus_groups

Returns a list containing one entry, which will be the ID of the
control group for process 1.
138 TotalView Reference Guide Version 6.2

CLI Namespace Commands

focus_processes
focus_processes Returns a list of processes in the current focus
Format:

TV::focus_processes [–all | –group | –process | –thread]

Arguments:
–all Changes the default width to all.

–group Changes the default width to group.

–process Changes the default width to process.

–thread Changes the default width to thread.

Description:
The TV::focus_processes command returns a list of all processes in the current
focus. If the focus width is something other than d (default), the focus width deter-
mines the set of processes returned. If the focus width is d, the
TV::focus_processes command returns process width. Using any of the options
changes the default width.

Examples:
f g1.< TV::focus_processes

Returns a list containing all processes in the same control as
process 1.
Version 6.2 TotalView Reference Guide 139

3
CLI Namespace Commands

focus_threads
focus_threads Returns a list of threads in the current focus
Format:

TV::focus_threads [–all | –group | –process | –thread]

Arguments:
–all Changes the default width to all.

–group Changes the default width to group.

–process Changes the default width to process.

–thread Changes the default width to thread.

Description:
The TV::focus_threads command returns a list of all threads in the current focus. If
the focus width is something other than d (default), the focus width determines the
set of threads returned. If the focus width is d, TV::focus_threads returns thread
width. Using any of the options changes the default width.

Examples:
f p1.< TV::focus_threads

Returns a list containing all threads in process 1.
140 TotalView Reference Guide Version 6.2

CLI Namespace Commands

group
group Sets and gets group properties
Format:

TV::group action [object-id] [other-args]

Arguments:
action The action to perform, as follows:

commands Displays the subcommands that you can use. The CLI
responds by displaying the four subcommands shown here.
Do not use additional arguments with this subcommand.

get Gets the values of one or more group properties. The other-args
argument can include one or more property names. The CLI
returns these values for these properties in a list in the same
order as you entered the property names.

If you use the –all option as an object-id, the CLI returns a list
containing one (sublist) element for each group.

properties Displays the properties that the CLI can access. Do not use
additional arguments with this option.

set Sets the values of one or more properties. The other-args argu-
ment is a sequence of property name and value pairs.

object-id The group ID. If you use the –all option, the operation is car-
ried out on all groups in the current focus.

other-args Arguments required by the get and set subcommands.

Description:
The TV::group command lets you examine and set group properties and states.
These states and properties are:

count The number of members in a group.

id The ID of the object.

member_type The type of the group’s members, either process or thread.

member_type_values
Returns a list of all possible values for the member_type
property.

members A list of a group’s processes or threads.

type The group’s type. Possible values are control, lockstep, share,
user, and workers.

type_values Returns a list of all possible values for the type property.
Version 6.2 TotalView Reference Guide 141

3
CLI Namespace Commands

group
Examples:
TV::group get 1 count

Returns the number of objects in group 1.
142 TotalView Reference Guide Version 6.2

CLI Namespace Commands

hex2dec
hex2dec Converts to decimal
Format:

TV::hex2dec number

Arguments:
number A hexadecimal number.

Description:
The TV::hex2dec Converts a hexadecimal number into decimal. You can type 0x
before this value. The CLI correctly manipulates 64-bit values, regardless of the size
of a long.
Version 6.2 TotalView Reference Guide 143

3
CLI Namespace Commands

image
image Sets and gets image properties
MiniContents:

Description:
Examples:

Format:
TV::image action [object-id] [other-args]

Arguments:
action The action to perform, as follows:

add Adds an object to an image. The object-id argument is required;
other-args is followed by two arguments. The first is the object
class of the image. At this release, this type can only be
type_transformation. The second is the prototype’s ID. (This
is illustrated in the Examples section.)

commands Displays the subcommands that you can use. The CLI re-
sponds by displaying the six subcommands shown here. Do
not use additional arguments with this subcommand.

get Gets the values of one or more image properties. The other-args
argument can include one or more property names. The CLI
returns these values for these properties in a list in the same
order as you entered the property names.

If you use the –all option as an object-id, the CLI returns a list
containing one (sublist) element for each object.

lookup Looks up an object in the image and returns a list of IDs of
matching objects. The object-id argument is required; other-args
contains two arguments. The first is the object class of the
image and the second is the name of the object. For example:

TV::image lookup 1|15 type “int *”

If no matching objects are found, the CLI returns an empty list.
You can obtain a list of class objects by using the lookup_keys
property.

lookup_keys A list containing the object classes that can be used in a by
name lookup; for example:

TV::image lookup 1|20 types foo

Currently, the only value returned is {types}.
144 TotalView Reference Guide Version 6.2

CLI Namespace Commands

image
properties Displays the properties that the CLI can access. Do not use
additional arguments with this option.

set Sets the values of one or more image properties. The other-args
argument contains property name and value pairs.

type_transformations

object-id The ID of an image. An image ID is two integers that identify
the base executable and an associated DLL. You can obtain a
list of all image IDs by using the following command:

TV::image get –all id

If you use the –all option, TotalView carries out this operation
on all images in the current focus.

other-args Arguments required by the get and set subcommands.

Description:
The TV::image command lets you examine and set the image properties and
states. “Image” refers to all the programs, libraries, and other components that
make up your executable. These states and properties are:

data_size The amount of memory used to store initialized data.

dpids IDs of the process associated with a thread

id The ID of the object.

is_dll A true/false value where 1 indicates the image is a shared
library and 0 if it is an executable.

name The name of the image.

type_transformations
A list of all of the type transformations that apply to an image.

text_size The amount of memory used to store your program’s machine
code instructions. The “text segment” is sometimes called the
“code segment.”

Examples:
TV::image lookup 1|15 type “int *”

Finds the type identifiers for the int * type in image 1|15. The
result might be:

1|25 1|76
Version 6.2 TotalView Reference Guide 145

3
CLI Namespace Commands

image
There can be more than one type with the same name in an
image since many debugging formats provide separate type
definitions in each source file.

foreach i [TV::image get –all id] {
puts [format “%40s; %s” [TV::image get $i name] $i]}

Lists all current images along with their IDs.
146 TotalView Reference Guide Version 6.2

CLI Namespace Commands

process
process Sets and gets process properties
Format:

TV::process action [object-id] [other-args]

Arguments:
action The action to perform, as follows:

commands Displays the subcommands that you can use. The CLI
responds by displaying the four subcommands shown here.
Do not use other arguments with this subcommand.

get Gets the values of one or more process properties. The other-
args argument can include one or more property names. The
CLI returns these property values in a list whose order is the
same as the property names you entered.

If you use the –all option as an object-id, the CLI returns a list
containing one (sublist) element for each object.

properties Displays the properties that the CLI can access. Do not use
other arguments with this subcommand.

set Sets the values of one or more properties. The other-args argu-
ments contains pairs of property names and values.

object-id An identifier for a process. For example, 1 represents process
1. If you use the –all option, the subcommand is carried out
on all objects of this class in the current focus.

other-args Arguments required by the get and set subcommands.

Description:
The TV::process command lets you examine and set process properties and states.
These states and properties are:

clusterid The ID of the cluster containing a process. This is a number
uniquely identifying the TotalView server that owns the pro-
cess. The ID for the cluster TotalView is running in is always 0
(zero).

duid The internal unique ID associated with an object.

executable The program’s name.

heap_size The amount of memory currently being used for data created
at runtime. Stated in a different way, the heap is an area of
memory that your program uses when it needs to dynamically
Version 6.2 TotalView Reference Guide 147

3
CLI Namespace Commands

process
allocate memory. For example, calls to malloc() allocate space
on the heap while free() releases it.

held A value (either 1 or 0) indicating if the process is held; 1 means
that the process is held. (settable)

hostname The name of the process's host system.

id The process ID.

image_ids A list of the IDs of all the images currently loaded into the pro-
cess both statically and dynamically. The first element of the
list is the current executable.

nodeid The ID of the node upon which the process is running. The ID
of each processor node is unique within a cluster.

stack_size The amount of memory used by the currently executing block
or routines and all the blocks routines that have invoked it. For
example, if your main routines invokes function foo(), the
stack contains two groups of information—these groups are
called “frames.” The first frame contains the information
required for the execution of your main routine and the sec-
ond, which is the current frame, contains the information
needed by foo(). If foo() invokes bar(), the stack contains
three frames. When foo() finishes executing, the stack only
contains one frame.

stack_vm_size The logical size of the stack is the difference between the cur-
rent value of the stack pointer and address from which the
stack originally grew. This value can be different from the size
of the virtual memory mapping in which the stack resides. For
example, the mapping can be larger than the logical size of the
stack if the process previously had a deeper nest of procedure
calls or made memory allocations on the stack, or it can be
smaller if the stack pointer has advanced but the intermediate
memory has not been touched.

The value here is this difference in size.

state Current state of the process. See state_values for a list of
states.

state_values Lists all possible values for the state property. These values
can be break, error, exited, running, stopped, or watch.

syspid The system process ID.
148 TotalView Reference Guide Version 6.2

CLI Namespace Commands

process
text_size The amount of memory used to store your program’s machine
code instructions. The “text segment” is sometimes called the
“code segment.”

threadcount The number of threads in the process.

threads A list of threads in the process.

vm_size The sum of the sizes of the mappings in the process's address
space.

Examples:
TV::process get 3 threads

Gets the list of threads for process 3. For example:

1.1 1.2 1.4

TV::process get 1 image_ids
Returns a list of image IDs in process 1. For example:

1|1 1|2 1|3 1|4

f g TV::process get –all id threads
For each process in the group, creates a list with the process
ID followed by the list of threads. For example:

{1 {1.1 1.2 1.4}} {2 {2.3 2.5}} {3 {3.1 3.7
3.9}}

foreach i [TV::process get 1 image_ids] {
puts [TV::image get $i name]}

Prints the name of the executable and all shared libraries cur-
rently linked into the focus process. For example, the output
of this command might be:

arraysAIX
/usr/lib/libxlf90.a
/usr/lib/libcrypt.a
/usr/lib/libc.a
Version 6.2 TotalView Reference Guide 149

3
CLI Namespace Commands

respond
respond Provides responses to commands
Format:

TV::respond response command

Arguments:
response The response to one or more commands. If you include more

than one response, separate the responses with newline
characters.

command One or more commands that the CLI will execute.

Description:
The TV::respond command executes a command. The command argument can be a
single command or a list of commands. In most cases, you will place this informa-
tion within braces ({}). If the CLI asks questions while command is executing, you are
not asked for the answer. Instead, the CLI uses the characters in the response string
for it. If more than one question is asked and response is used up, TV::respond starts
over at the beginning of the response string. If response does not end with a newline,
TV::respond appends one.

Do not use this command to suppress the MORE prompt in macros. You should
instead use the following command:

dset LINES_PER_SCREEN 0

The most common values for response are y and n.

NOTE If you are using the TotalView GUI and the CLI at the same time, your CLI command
may cause dialog boxes to appear. You cannot use the TV::respond command to close or
interact with these dialog boxes.

Examples:
TV::respond {y} {exit}

Exits from TotalView. This command automatically answers the
“Do you really wish to exit TotalView” question.

set f1 y
set f2 exit
TV::respond $f1 $f2

A way to exit from TotalView without seeing the “Do you really
wish to exit TotalView” question. Neither of these two uses is
recommended. Instead, you can use exit –force.
150 TotalView Reference Guide Version 6.2

CLI Namespace Commands

scope
scope Does foobar
Format:

TV::scope action [object-id] [other-args]

Description:
The TV::scope command lets you examine and set the scope properties and
states. This command is explained in the CREATING TYPE TRANSFORMATION GUIDE.
Version 6.2 TotalView Reference Guide 151

3
CLI Namespace Commands

source_process_startup
source_process_startup “Sources” a .tvd file when a process is loaded
Format:

TV::source_proccess_startup process_id

Arguments:
process_id The PID of the current process.

Description:
The TV::source_process_startup command loads and interprets the .tvd file asso-
ciated with the current process. That is, if a file named executable.tvd exists, the CLI
sources it.
152 TotalView Reference Guide Version 6.2

CLI Namespace Commands

symbol
symbol Does foobar
Format:

TV::symbol action [object-id] [other-args]

Description:
The TV::symbol command lets you examine and set the symbol properties and
states. This command is explained in the CREATING TYPE TRANSFORMATION GUIDE.
Version 6.2 TotalView Reference Guide 153

3
CLI Namespace Commands

thread
thread Gets and sets thread properties
MiniContents:

Format:
TV::thread action [object-id] [other-args]

Arguments:
action The action to perform, as follows:

commands Displays the subcommands that you can use. The CLI
responds by displaying the four subcommands shown here.
Do not use other arguments with this option.

get Gets the values of one or more thread properties. The other-
args argument can include one or more property names. The
CLI returns these values in a list, and places them in the same
order as the property names you entered.

If you use the –all option as an object-id, the CLI returns a list
containing one (sublist) element for each object.

properties Lists an object’s properties. Do not use other arguments with
this option.

set Sets the values of one or more properties. The other-args argu-
ment contains paired property names and values.

object-id A thread ID. If you use the –all option, the operation is carried
out on all threads in the current focus.

other-args Arguments required by the get and set subcommands.

Description:
The TV::thread command lets you examine and set the thread properties and
states. These states and properties are:

continuation_sig The signal that should be passed to a thread the next time it
runs. On some systems, the thread receiving the signal may
not always be the one for which this property was set.

dpid The ID of the process associated with a thread.

duid The internal unique ID associated with the thread.

held A value (either 1 or 0) indicating if the thread is held; 1 means
that the thread is held. (settable)

id The ID of the thread.
154 TotalView Reference Guide Version 6.2

CLI Namespace Commands

thread
manager A value (either 1 or 0) indicating if this is a system manger
thread; 1 means that it is.

pc Current PC at which the target is executing. (settable)

sp The value of the stack pointer.

state Current state of the target. See state_values for a list of states.

state_values A list of values for the state property. These values are break,
error, exited, running, stopped, and watch.

systid The system thread ID.

Examples:
f p3 TV::thread get –all id

Returns a list of thread IDs for process 3. For example:

1.1 1.2 1.4
Version 6.2 TotalView Reference Guide 155

3
CLI Namespace Commands

type
type Gets and sets type properties
Format:

TV::type action [object-id] [other-args]

Arguments:
action The action to perform, as follows:

commands Displays the subcommands that you can use. The CLI
responds by displaying the four subcommands shown here.
Do not use other arguments with this option.

get Gets the values of one or more type properties. The other-args
argument can include one or more property names. The CLI
returns these values in a list, and places them in the same
order as the property names you entered.

If you use the –all option as an object-id, the CLI returns a list
containing one (sublist) element for each object.

properties Lists a type’s properties. Do not use other arguments with this
option.

set Sets the values of one or more type properties. The other-args
argument contains paired property names and values.

object-id An identifier for an object. For example, 1 represents process
1, and 1.1 represents thread 1 in process 1. If you use the –all
option, the operation is carried out on all objects of this class
in the current focus.

other-args Arguments required by the get and set subcommands.

Description:
The TV::type command lets you examine and set the type properties and states.
These states and properties are:

enum_values For an enumerated type, a list of {name value} pairs giving
the definition of the enumeration. If you apply this to a non-
enumerated type, the CLI returns an empty list.

id The ID of the object.

image_id The ID of the image in which this type is defined.

language The language of the type.

length The length of the type.

name The name of the type; for example, class foo.
156 TotalView Reference Guide Version 6.2

CLI Namespace Commands

type
prototype The ID for the prototype. If the object is not prototyped, the
returned value is {}.

rank (array types only) The rank of the array.

struct_fields (class/struct/union types only). A list of lists giving the descrip-
tion of all the type’s fields. Each sublist contains the following
fields:

{ name type_id addressing properties }

where:

name is the name of the field.

type_id is simply the type_id of the field.

addressing contains additional addressing information that
points to the base of the field.

properties contains an additional list of properties in the follow-
ing format:

“[virtual] [public|private|protected] base class”

If no properties apply, this string is null.

If you use get struct_fields for a type that is not a class, struct,
or a union, the CLI returns an empty list.

target For an array or pointer type, returns the ID of the array mem-
ber or target of the pointer. If this is not applied to one of
these types, the CLI returns an empty list.

type Returns a string describing this type. For example, signed
integer.

type_values Returns all possible values for the type property.

Examples:
TV::type get 1|25 length target

Finds the length of a type and (assuming it is a pointer or an
array type) the target type. The result may look something like:

4 1|12

The following example uses the TV::type properties command to obtain the list of
properties:
Version 6.2 TotalView Reference Guide 157

3
CLI Namespace Commands

type
d1.<> \
proc print_type {id} {

foreach p [TV::type properties] {
puts [format "%13s %s" $p [TV::type get $id $p]]

}
}
d1.<> print_type 1|6

d1.<>

enum_values
id

image_id
language

length
name

prototype
rank

struct_fields
target

type
type_values

1|6
1|1
f77
4
<integer>

0

Signed Integer
{Array} {Array of characters}
{Enumeration}...
158 TotalView Reference Guide Version 6.2

CLI Namespace Commands

type_transformation
type_transformation Creates type transformations
and examine properties

Format:
TV::type_transformation action [object-id] [other-args]

Description:
The TV::type_transformation command lets you examine and set the scope prop-
erties and states. This command is explained in the CREATING TYPE TRANSFORMATION
GUIDE.
Version 6.2 TotalView Reference Guide 159

3
CLI Namespace Commands

type_transformation
160 TotalView Reference Guide Version 6.2

Version 6.2
Chapter 4
TotalView Variables
This chapter contains a list of all CLI and TotalView variables. This chapter has three sec-
tions, each corresponding to a CLI namespace, as follows:

g Top-Level (::) Namespace
g TV:: Namespace
g TV::GUI:: Namespace

Top-Level (::) Namespace

ARGS(dpid): Contains the arguments that TotalView passes to the process with
TotalView ID dpid the next time you start the process.

Permitted Values: A string
Default: None

ARGS_DEFAULT: Contains the argument passed to a new process when no
ARGS(dpid) variable is defined.

Permitted Values: A string
Default: None

BARRIER_STOP_ALL: Contains the value for the “stop_when_done” property for
newly created action points. This property tells TotalView what else it should stop
when a barrier point is satisfied. This property also tells TotalView what else it
should stop when a thread encounters this action point. You can also set this value
using the When barrier hit, stop value in the Action Points Page of the File >

Preferences Dialog Box. The values that you can use are as follows:
TotalView Reference Guide 161

4
TotalView Variables

Top-Level (::) Namespace—BARRIER_STOP_WHEN_DONE
group: TotalView will stop all processes in a thread’s control group when a thread
reaches a barrier created using this as a default.

process: TotalView will stop the process in which the thread is running when a
thread reaches a barrier created using this default.

none: TotalView just stops the thread that hit a barrier created using this default.

This variable is the same as the TV::barrier_stop_all variable.

Permitted Values: group, process, or thread
Default: group

BARRIER_STOP_WHEN_DONE: Contains the default value that TotalView uses
when a barrier point is satisfied. You can also set this value if you use the
–stop_when_done command-line option or the When barrier done, stop value in
the Action Points Page of the File > Preferences Dialog Box. The values you can
use are as follows:

group: When a barrier is satisfied, TotalView stops all processes in the control
group.

process: When a barrier is satisfied, TotalView stops the processes in the satisfac-
tion set.

none: TotalView only stops the threads in the satisfaction set; other threads are not
affected. For process barriers, there is no difference between process and none.

In all cases, TotalView releases the satisfaction set when the barrier is satisfied.

This variable is the same as the TV::barrier_stop_when_done variable.

Permitted Values: group, process, or thread
Default: group

CGROUP(dpid): Contains the control group for the process with the TotalView ID dpid.
Setting this variable moves process dpid into a different control group. For example,
the following command moves process 3 into the same group as process 1:

dset CGROUP(3) $CGROUP(1)

Permitted Values: A number
Default: None
162 TotalView Reference Guide Version 6.2

TotalView Variables

Top-Level (::) Namespace—GROUP(gid)
COMMAND_EDITING: Enables some Emacs-like commands that you can use while
editing text in the CLI. These editing commands are always available in the CLI win-
dow of the TotalView GUI. However, they are only available in the stand-alone CLI if
the terminal in which you are running it supports cursor positioning and clear-to-
end-of-line. The commands that you can use are:

^A: Moves the cursor to the beginning of the line.

^B: Moves the cursor one character backward.

^D: Deletes the character to the right of cursor.

^E: Moves the cursor to the end of the line.

^F: Moves the cursor one character forward.

^K: Deletes all text to the end of line.

^N: Retrieves the next entered command (only works after ^P).

^P: Retrieves the previously entered command.

^R or ^L: Redraws the line.

^U: Deletes all text from the cursor to the beginning of the line.

Rubout or Backspace: Deletes the character to the left of the cursor.

Permitted Values: true or false
Default: false

EXECUTABLE_PATH: Contains a colon-separated list containing the directories that
TotalView searches when it looks for source and executable files.

Permitted Values: Any directory or directory path. To include the current setting, use
$EXECUTABLE_PATH.

Default: . (dot)

GROUP(gid): Contains a list containing the TotalView IDs for all members in group gid.

The first element in the list indicates what kind of group it is, as follows:

control The group of all processes in a program

lockstep A group of threads that share the same PC

process A user-created process group
Version 6.2 TotalView Reference Guide 163

4
TotalView Variables

Top-Level (::) Namespace—GROUPS
share The group of processes in one program that share the same exe-
cutable image

thread A user-created thread group

workers The group of worker threads in a program

Elements that follow are either pids (for process groups) or pid.tid pairs (for thread
groups).

The gid is a simple number for most groups. In contrast, a lockstep group’s ID num-
ber is of the form pid.tid. Thus, GROUP(2.3) contains the lockstep group for thread
3 in process 2. Note, however, that the CLI will not display lockstep groups when
you use dset with no arguments—they are hidden variables.

The GROUP(id) variable is read-only.

Permitted Values: A Tcl array of lists indexed by the group ID. Each entry contains
the members of one group.

Default: None

GROUPS: Contains a list that contains all TotalView groups IDs. Lockstep groups are
not contained in this list. This is a read-only value and cannot be set.

Permitted Values: A Tcl list of IDs.

LINES_PER_SCREEN: Defines the number of lines shown before the CLI stops print-
ing information and displays its more prompt. The following values have special
meaning:

0 No more processing occurs, and the printing does not stop when
the screen fills with data.

NONE This is a synonym for 0.

AUTO The CLI uses the tty settings to determine the number of lines to
display. This may not work in all cases. For example, Emacs sets
the tty value to 0. If AUTO works improperly, you will need to ex-
plicitly set a value.

Permitted Values: A positive integer, or the AUTO or NONE strings.
Default: Auto
164 TotalView Reference Guide Version 6.2

TotalView Variables

Top-Level (::) Namespace—SHARE_ACTION_POINT
MAX_LEVELS: Defines the maximum number of levels that the dwhere command will
display.

Permitted Values: A positive integer.
Default: 512

MAX_LIST: Defines the number of lines that the dlist command will display.

Permitted Values: A positive integer
Default: 20

PROCESS(dpid): Contains a list of information associated with a dpid. This is a read-
only value and cannot be set.

Permitted Values: An integer
Default: None

PROMPT: Defines the CLI prompt. If you use brackets ([]) in the prompt, TotalView
assumes the information within the brackets is a Tcl command and evaluates this
information before it creates the prompt string.

Permitted Values: Any string. If you wish to access the value of PTSET, you must place
the variable within brackets; that is, [dset PTSET].

Default: {[dfocus]> }

PTSET : Contains the current focus. This is a read-only value and cannot be set.

Permitted Values: A string
Default: d1.<

SGROUP(pid): Contains the group ID of the share group for process pid. TotalView
decides which share group this is by looking at the control group for the process
and the executable associated with this process. You cannot directly modify this
group.

Permitted Values: A number
Default: None

SHARE_ACTION_POINT: Indicates the scope in which TotalView places newly cre-
ated action points. In the CLI, this is the dbarrier, dbreak, and dwatch commands.
If this Boolean value is true, newly created action point are shared across the
Version 6.2 TotalView Reference Guide 165

4
TotalView Variables

Top-Level (::) Namespace—STOP_ALL
group. If it is false, a newly created action point is only active in the process in
which it is set.

As an alternative to setting this variable, you can select the Plant in share group
check box in the Action Points Page in the File > Preferences Dialog Box. You can
override this value in the GUI by using selecting the Plant in share group checkbox
in the Action Point > Properties Dialog Box.

Permitted Values: true or false
Default: true

STOP_ALL: Indicates a default property for newly created action points. This property
tells TotalView what else it should stop when it encounters this action point. The
values you can set are as follows:

group Stops the entire control group when the action point is hit.

process Stops the entire process when the action point is hit.

thread Only stops the thread that hit the action point. Note that none is a
synonym for thread.

Permitted Values: group, process, or thread
Default: group

TAB_WIDTH: Indicates the number of spaces used to simulate a tab character when
the CLI displays information.

Permitted Values: A positive number. A value of –1 indicates that the CLI does not
simulate tab expansion.

Default: 8

THREADS(pid): Contains a list of all threads in the process pid, in the form {pid.1
pid.2 ...}. This is a read-only variable and cannot be set.

Permitted Values: A Tcl list.
Default: None

TOTALVIEW_ROOT_PATH: Names the directory in which the TotalView executable is
located. This is a read-only variable and cannot be set. This variable is exported
as TVROOT, and is can be used in launch strings.

Permitted Values: The location of the TotalView installation directory.
166 TotalView Reference Guide Version 6.2

TotalView Variables

Top-Level (::) Namespace—WGROUP(pid.tid)
TOTALVIEW_TCLLIB_PATH: Contains a list containing the directories in which the
CLI searches for TCL library components.

Permitted Values: Any valid directory or directory path. To include the current setting,
use $TOTALVIEW_TCLLIB_PATH.

Default: The directory containing the CLI’s Tcl libraries

TOTALVIEW_VERSION: Contains the version number and the type of computer
architecture upon which TotalView is executing. This is a read-only variable and
cannot be set.

Permitted Values: A string containing the platform and string.
Default: Platform-specific

VERBOSE: Controls the error message information displayed by the CLI. The values
for this variable can be:

INFO Prints errors, warnings, and informational messages. Informational
messages include data on dynamic libraries and symbols.

WARNING Only print errors and warnings.

ERROR Only print error messages.

SILENT Does not print error, warning, and informational messages. This
also shuts off the printing of results from CLI commands. This
should only be used when the CLI is run in batch mode.

Permitted Values: INFO, WARNING, ERROR, and SILENT
Default: INFO

WGROUP(pid): The group ID of the thread group of worker threads associated with the
process pid. This variable is read-only.

Permitted Values: A number
Default: None

WGROUP(pid.tid): Contains one of the following:

g The group ID of the workers group in which thread pid.tid is a member

g 0 (zero), which indicates that thread pid.tid is not a worker thread

Storing a nonzero value in this variable marks a thread as a worker. In this case, the
returned value is the ID of the workers group associated with the control group,
regardless of the actual nonzero value that you had assigned to it.
Version 6.2 TotalView Reference Guide 167

4
TotalView Variables

TV:: Namespace—TV::ask_on_dlopen
Permitted Values: A number representing the pid.tid
Default: None

TV:: Namespace

TV::ask_on_dlopen: Setting this variable to true tells TotalView that it should ask you
about stopping processes that use the dlopen or load (AIX only) system calls
dynamically load a new shared library.

If this is set to false, TotalView will not ask about stopping a process that dynami-
cally loads a shared library.

Permitted Values: true or false
Default: true

TV::auto_array_cast_bounds: Indicates the number of array elements that are dis-
played when the TV::auto_array_cast_enabled variable is set to true. This is the
variable set by the Bounds field of the Pointer Dive Page in the File > Preferences
Dialog Box.

Permitted Values: An array specification
Default: [10]

TV::auto_array_cast_enabled: When this is set to true, TotalView will automatically
dereference a pointer into an array. The number of array elements is indicated in
the TV::auto_array_cast_bounds variable. This is the variable set by the Cast
dereferenced C pointers to array string checkbox of the Pointer Dive Page in the
File > Preferences Dialog Box.

Permitted Values: true or false
Default: false

TV::auto_deref_in_all_c: Tells TotalView if and how it should dereference C and
C++ pointers when you perform a View > Dive in All operation, as follows:

yes_dont_push While automatic dereferencing will occur, you can’t use the
Back command to see the undereferenced value when per-
forming a Dive in All operation.
168 TotalView Reference Guide Version 6.2

TotalView Variables

TV:: Namespace—TV::auto_deref_initial_c
yes You will be able to use the Back control to see undereferenced
values.

no Do not automatically dereference values when performing a
Dive in All operation.

This is the variable set when you select the “Dive in All” element in the Pointer Dive
Page of the File > Preferences Dialog Box.

Permitted Values: no, yes, or yes_dont_push
Default: no

TV::auto_deref_in_all_fortran: Tells TotalView if and how it should dereference For-
tran pointers when you perform a Dive in All operation, as follows:

yes_dont_push While automatic dereferencing will occur, you can’t use the
Back command to see the undereferenced value when per-
forming a Dive in All operation.

yes You will be able to use the Back control to see undereference
values.

no Do not automatically dereference values when performing a
Dive in All operation.

This is the variable set when you select the Dive in All element in the Pointer Dive
Page of the File > Preferences Dialog Box.

Permitted Values: no, yes, or yes_dont_push
Default: no

TV::auto_deref_initial_c: Tells TotalView if and how it should dereference C pointers
when they are displayed, as follows:

yes_dont_push While automatic dereferencing will occur, you can’t use the
Back command to see the undereferenced value.

yes You will be able to use the Back control to see undeferenced
values.

no Do not automatically dereference values.

This is the variable set when you select the initially element in the Pointer Dive
Page of the File > Preferences Dialog Box.

Permitted Values: no, yes, or yes_dont_push
Default: no
Version 6.2 TotalView Reference Guide 169

4
TotalView Variables

TV:: Namespace—TV::auto_deref_initial_fortran
TV::auto_deref_initial_fortran: Tells TotalView if and how it should dereference For-
tran pointers when they are displayed, as follows:

yes_dont_push While automatic dereferencing will occur, you can’t use the
Back command to see the undereferenced value.

yes You will be able to use the Back control to see undeferenced
values.

no Do not automatically dereference values.

This is the variable set when you select the initially element in the Pointer Dive
Page of the File > Preferences Dialog Box.

Permitted Values: no, yes, or yes_dont_push
Default: no

TV::auto_deref_nested_c: Tells TotalView if and how it should dereference C point-
ers when you dive on structure elements:

yes_dont_push While automatic dereferencing will occur, you can’t use the
Back command to see the undereferenced value.

yes You will be able to use the Back control to see undeferenced
values.

no Do not automatically dereference values.

This is the variable set when you select the from an aggregate element in the
Pointer Dive Page of the File > Preferences Dialog Box.

Permitted Values: no, yes, or yes_dont_push
Default: yes_dont_push

TV::auto_deref_nested_fortran: Tells TotalView if and how it should dereference
Fortran pointers when they are displayed, as follows:

yes_dont_push While automatic dereferencing will occur, you can’t use the
Back command to see the undereferenced value.

yes You will be able to use the Back control to see undeferenced
values.

no Do not automatically dereference values.

This is the variable set when you select the from an aggregate element in the
Pointer Dive Page of the File > Preferences Dialog Box.
170 TotalView Reference Guide Version 6.2

TotalView Variables

TV:: Namespace—TV::barrier_stop_all
Permitted Values: no, yes, or yes_dont_push
Default: yes_dont_push

TV::auto_load_breakpoints: Setting this variable to true tells TotalView that it
should automatically load action points from the file named
filename.TVD.v3breakpoints where filename is the name of the file being debugged.
If the variable is set to false, TotalView does not automatically load your break-
points. If you set this to false, you can still load breakpoints if you use the Action
Point > Load All or the dactions -load command.

Permitted Values: true or false
Default: true

TV::auto_save_breakpoints: Setting this variable to true tells TotalView that it
should automatically write information about breakpoints to a file named
filename.TVD.v3breakpoints where filename is the name of the file being debugged.
Information about watchpoints is not saved.

TotalView writes this information when you exit from TotalView. If this variable is set
to false, you can explicitly save this information by using the Action Point > Save
All or the dactions –save command.

Permitted Values: true or false
Default: false

TV::barrier_stop_all: Contains the value for the “stop_all” property for newly cre-
ated action points. This property tells TotalView what else it should stop when a
thread encounters this action point. You can also set this value using the –stop_all
command-line option or the When barrier hit, stop value in the Action Points Page
of the File > Preferences Dialog Box. The values that you can use are as follows:

group: TotalView will stop all processes in a thread’s control group when a thread
reaches a barrier created using this as a default.

process: TotalView will stop the process in which the thread is running when a
thread reaches a barrier created using this default.

none: TotalView just stops the thread that hit a barrier created using this default.

This variable is the same as the BARRIER_STOP_ALL variable.
Version 6.2 TotalView Reference Guide 171

4
TotalView Variables

TV:: Namespace—TV::barrier_stop_when_done
Permitted Values: group, process, or thread
Default: group

TV::barrier_stop_when_done: Contains the value for the “stop_when_done” prop-
erty for newly created action points. This property tells TotalView what else it
should stop when a barrier point is satisfied. You can also set this value if you use
the –stop_when_done command-line option or the When barrier done, stop value
in the Action Points Page of the File > Preferences Dialog Box. The values you can
use are as follows:

group: When a barrier is satisfied, TotalView stops all processes in the control
group.

process: When a barrier is satisfied, TotalView stops the processes in the satisfac-
tion set.

none: TotalView only stops the threads in the satisfaction set; other threads are not
affected. For process barriers, there is no difference between process and none.

In all cases, TotalView releases the satisfaction set when the barrier is satisfied.

This variable is the same as the BARRIER_STOP_WHEN_DONE variable.

Permitted Values: group, process, or thread
Default: group

TV::bulk_launch_base_timeout: Defines the base timeout period used when
TotalView executes a bulk server launch.

Permitted Values: A number from 1 to 3600 (1 hour)
Default: 20

TV::bulk_launch_enabled: When this is set to true, tells TotalView that it should use
its bulk launch features when it automatically launches the TotalView Debugger
Server (tvdsvr) for remote processes.

Permitted Values: true or false
Default: false

TV::bulk_launch_incr_timeout: Defines the incremental timeout period that
TotalView waits for process to launch when it automatically launches the TotalView
Debugger Server (tvdsvr) using the bulk server feature.
172 TotalView Reference Guide Version 6.2

TotalView Variables

TV:: Namespace—TV::bulk_launch_tmpfile2_header_line
Permitted Values: A number from 1 to 3600 (1 hour)
Default: 10

TV::bulk_launch_string: Defines the command that will be used to launch the
TotalView Debugger Server (tvdsvr) when remote processes are created. For infor-
mation on this launch string, see “Replacement Characters” on page 219.

Permitted Values: A string, usually contained within braces {}
Default: The default value depends upon the platform—use the dset

command to see what this default is

TV::bulk_launch_tmpfile1_header_line: Defines the header line used in the first
temporary file when TotalView does a bulk server launch operation. For information
on this launch string, see “Replacement Characters” on page 219.

Permitted Values: A string
Default: None

TV::bulk_launch_tmpfile1_host_lines: Defines the host line used in the first tem-
porary file when TotalView performs a bulk server launch operation. For information
on this launch string, see “Replacement Characters” on page 219.

Permitted Values: A string
Default: %R

TV::bulk_launch_tmpfile1_trailer_line: Defines the trailer line used in the first
temporary file when TotalView performs a bulk server launch operation. For infor-
mation on this launch string, see “Replacement Characters” on page 219.

Permitted Values: A string
Default: None

TV::bulk_launch_tmpfile2_header_line: Defines the header line used in the sec-
ond temporary file when TotalView performs a bulk server launch operation. For
information on this launch string, see “Replacement Characters” on page 219.

Permitted Values: A string
Default: None
Version 6.2 TotalView Reference Guide 173

4
TotalView Variables

TV:: Namespace—TV::bulk_launch_tmpfile2_host_lines
TV::bulk_launch_tmpfile2_host_lines: Defines the host line used in the second
temporary file when TotalView does a bulk server launch operation.For information
on this launch string, see “Replacement Characters” on page 219.

Permitted Values: A string
Default: {tvdsvr –working_directory %D –callback %L –set_pw %P

-verbosity %V}

TV::bulk_launch_tmpfile2_trailer_line: Defines the trailer line used in the second
temporary file when TotalView does a bulk server launch operation. For information
on this launch string, see “Replacement Characters” on page 219.

Permitted Values: A string
Default: None

TV::c_type_strings: When this is set to true, TotalView uses C type string extensions
when it displays character arrays. When set to false, TotalView instead uses its
string type extensions.

Permitted Values: true or false
Default: true

TV::comline_patch_area_base: Allocates the patch space dynamically at the given
address. See “Allocating Patch Space for Compiled Expressions” in Chapter 14 of the
TOTALVIEW USERS GUIDE.

Permitted Values: A hexadecimal value indicating space accessible to TotalView.
Default: 0xffffffffffffffff

TV::comline_path_area_length: Sets the length of the dynamically allocated patch
space to the specified length. See “Allocating Patch Space for Compiled Expressions” in
Chapter 14 of the TOTALVIEW USERS GUIDE.

Permitted Values: A positive number
Default: 0

TV::command_editing: Enables some Emacs-like commands that you can use while
editing text in the CLI. These editing commands are always available in the CLI win-
dow of TotalView GUI. However, they are only available within the stand-alone CLI if
the terminal in which you are running it supports cursor positioning and clear-to-
end-of-line. The commands that you can use are:
174 TotalView Reference Guide Version 6.2

TotalView Variables

TV:: Namespace—TV::compiler_vars
^A: Moves the cursor to the beginning of the line.

^B: Moves the cursor one character backward.

^D: Deletes the character to the right of cursor.

^E: Moves the cursor to the end of the line.

^F: Moves the cursor one character forward.

^K: Deletes all text to the end of line.

^N: Retrieves the next entered command (only works after ^P).

^P: Retrieves the previously entered command.

^R or ^L: Redraws the line.

^U: Deletes all text from the cursor to the beginning of the line.

Rubout or Backspace: Deletes the character to the left of the cursor.

Permitted Values: true or false
Default: false

TV::compile_expressions: When this variable is set to true, TotalView enables com-
piled expressions. If this is set to false, TotalView interprets your expression.

Permitted Values: true or false
Default: HP Alpha and IBM AIX: true

SGI IRIX: false
Not settable on other platforms

TV::compiler_vars: (HP Alpha, HP, and SGI only) When this is set to true, TotalView
shows variables created by your Fortran compiler as well as the variables in your
program. When set to false (which is the default), TotalView does not show the vari-
ables created by your compiler.

Some Fortran compilers (HP f90/f77, SGI 7.2 compilers) write debugging informa-
tion that describes variables that the compiler created to assist in some opera-
tions. For example, it could create a variable used to pass the length of
character*(*) variables. You might want to set this variable to true if you are looking
for a corrupted runtime descriptor.
Version 6.2 TotalView Reference Guide 175

4
TotalView Variables

TV:: Namespace—TV::copyright_string
You can override the value set to this variable in a startup file by using the following
command-line options:

–compiler_vars: sets this variable to true

–no_compiler_vars: sets this variable to false

Permitted Values: true or false
Default: false

TV::copyright_string: This is a read-only string containing the copyright information
displayed when you start the CLI and TotalView.

TV::current_cplus_demangler: Setting this variable overrides the C++ demangler
that TotalView uses. TotalView will ignore what you set the value of this variable to
unless you also set the value of the TV::force_default_cplus_demangler variable.
You can set this variable to the following values:

g compaq: HP cxx on running Linux-Alpha

g dec: HP Tru64 C++

g gnu: GNU C++ on Linux Alpha

g gnu_dot: GNU C++ Linux x86

g gnu_v3: GNU C++ Linux x86

g hp: HP aCC compiler

g irix: SGI IRIX C++

g kai: KAI C++

g kai3_n: KAI C++ version 3.n

g kai_4_0: KAI C++

g spro: SunPro C++ 4.0 or 5.2

g spro5: SunPro C++ 5.0 or later

g sun: Sun CFRONT C++

g xlc: IBM XLC/VAC++ compilers

Permitted Values: A string naming the compiler
Default: Derived from your platform and information within your

program

TV::current_fortran_demangler: Setting this variable overrides the Fortran deman-
gler that TotalView uses. TotalView will ignore what you set the value of this variable
176 TotalView Reference Guide Version 6.2

TotalView Variables

TV:: Namespace—TV::data_format_double
to unless you also set the value of the TV::force_default_f9x_demangler variable.
You can set this variable to the following values:

g xlf90: IBM Fortran

g dec: HP Tru64 Fortran

g decf90: HP Tru64 Fortran 90

g fujitsu_f9x: Fujitsu Fortran 9x

g hpux11_64_f9x: HP Fortran 9x

g intel: Intel Fortran 9x

g mipspro_f9x: SGI IRIX Fortran

g sunpro_f9x_4: Sun ProFortran 4

g sunpro_f9x_5: Sun ProFortran 5

Permitted Values: A string naming the compiler
Default: Derived from your platform and information within your

program

TV::data_format_double: Defines the format TotalView uses when displaying dou-
ble-precision values. This is one of a series of variables that define how TotalView
displays data. The format of each is similar and is as follows:

{presentation format-1 format-2 format 3}

presentation Selects which format TotalView uses when displaying
information.

auto: Equivalent to the C language’s printf() function’s %g
specifier. You can use this with integer and floating-point num-
bers. This format will either be hexdec or dechex, depending
upon the programming language being used.

dec: Equivalent to the printf() function’s %d specifier. You can
use this with integer and floating-point numbers.

dechex: Displays information using the dec and hex formats.
You can use this with integers.

hex: Equivalent to the printf() function’s %x specifier. You can
use this with integer and floating-point numbers.

hexdec: Displays information using the hex and dec formats.
You can use this with integer numbers.
Version 6.2 TotalView Reference Guide 177

4
TotalView Variables

TV:: Namespace—TV::data_format_ext
oct: Equivalent to the printf() function’s %o specifier. You can
use this with integer and floating-point numbers.

sci: Equivalent to the printf() function’s %e specifier. You can
use this with floating-point numbers.

You can display floating point information using dec, hex, and
oct formats. You can display integers using auto, dec, and sci
formats.

format For integers, format-1 defines the decimal format, format-2 de-
fines the hexadecimal format, and format-3 defines the octal
format.

For floating point numbers, format-1 defines the fixed point
display format, format-2 defines the scientific format, and for-
mat-3 defines the auto (printf()’s %g) format.

The format string is a combination of the following specifiers:

%: A signal indicating the beginning of a format.

width: A positive integer. This is the same width specifier that is
used in the printf() function.

. (period): A punctuation mark separating the width from the
precision.

precision: A positive integer. This is the same precision specifier
that is used in the printf() function.

(pound): Tells TotalView to display a 0x prefix for hexadeci-
mal and 0 for octal formats. This isn’t used within floating-
point formats.

0 (zero): Tells TotalView to pad a value with zeros. This is ig-
nored if the number is left-justified. If you omit this character,
TotalView pads the value with spaces.

– (hyphen): Tells TotalView to left-justify the value within the
field’s width.

Permitted Values: A value in the described format
Default: {auto %-1.15 %-1.15 %-20.2}

TV::data_format_ext: Defines the format TotalView uses when displaying extended
floating point values such as long doubles.For a description of the contents of this
variable, see TV::data_format_double.
178 TotalView Reference Guide Version 6.2

TotalView Variables

TV:: Namespace—TV::data_format_single
Permitted Values: A value in the described format
Default: {auto %-1.15 %-1.15 %-1.15}

TV::data_format_int16: Defines the format TotalView uses when displaying 16-bit
integer values. For a description of the contents of this variable, see
TV::data_format_double.

Permitted Values: A value in the described format
Default: {auto %1.1 %#6.4 %#7.6}

TV::data_format_int32: Defines the format TotalView uses when displaying 32-bit
integer values. For a description of the contents of this variable, see
TV::data_format_double.

Permitted Values: A value in the described format
Default: {auto %1.1 %#10.8 %#12.11}

TV::data_format_int64: Defines the format TotalView uses when displaying 64-bit
integer values. For a description of the contents of this variable, see
TV::data_format_double.

Permitted Values: A value in the described format
Default: {auto %1.1 %#18.16 %#23.22}

TV::data_format_int8: Defines the format TotalView uses when displaying 8-bit inte-
ger values. For a description of the contents of this variable, see
TV::data_format_double.

Permitted Values: A value in the described format
Default: {auto %1.1 %#4.2 %#4.3}

TV::data_format_single: Defines the format TotalView uses when displaying single
precision, floating-point values. For a description of the contents of this variable,
see TV::data_format_double.

Permitted Values: A value in the described format
Default: {auto %-1.6 %-1.6 %-1.6}
Version 6.2 TotalView Reference Guide 179

4
TotalView Variables

TV:: Namespace—TV::data_format_stringlen
TV::data_format_stringlen: Defines the maximum number of characters displayed
for a string.

Permitted Values: A positve integer number
Default: 100

TV::dbfork: When this variable is set to true, TotalView catches the fork(), vfork(), and
execve() system calls if your executable is linked with the dbfork library.

Permitted Values: true or false
Default: true

TV::display_assembler_symbolically: When this variable is set to true, TotalView
displays assembler locations as label+offset. When it is set to false, these loca-
tions are displayed as hexadecimal addresses.

Permitted Values: true or false
Default: false

TV::dll_ignore_prefix: Contains a colon-separated list of prefixes that indicates
which library files TotalView should not load.

TotalView will not ask you if you would like to stop a process:

g If you also set the TV::ask_on_dlopen variable to true.

g If the suffix of the library being loaded does not match a suffix contained in the
TV::dll_stop_suffix variable.

g If one or more of the prefixes in this list match the name of the library being
loaded.

Permitted Values: A list of path names, each item of which is separated from
another by a colon

Default: /lib/:/usr/lib/:/usr/lpp/:/usr/ccs/lib/:/usr/dt/lib/:/tmp/

TV::dll_stop_suffix: Contains a colon-separated list of suffixes that tell TotalView that
it should stop the current process when it loads a library file having this suffix.

TotalVIew will ask you if you would like to stop the process:

g If TV::ask_on_dlopen variable is set to true

g If one or more of the suffixes in this list match the name of the library being
loaded.
180 TotalView Reference Guide Version 6.2

TotalView Variables

TV:: Namespace—TV::editor_launch_string
Permitted Values: A Tcl list of suffixes
Default: None

TV::dpvm: When this is set to true, TotalView enables support for debugging HP Tru64
UNIX Parallel Virtual Machine applications. This value can only be set in a startup
script. You can override this variable’s value by using the following command-line
options switches:

–dpvm sets this variable to true

–no_dpvm sets this variable to false

Permitted Values: true or false
Default: false

TV::dump_core: When this is set to true, TotalView will create a core file when an
internal TotalView error occurs. This is only used when debugging TotalView prob-
lems. You can override this variable’s value by using the following command-line
options:

–dump_core sets this variable to true

–no_dumpcore sets this variable to false

Permitted Values: true or false
Default: false

TV::dynamic: When this is set to true, TotalView loads symbols from shared libraries.
This variable is available on all platforms supported by Etnus. (This may not be true
for platforms ported by others. For example, this feature is not available for Hitachi
computers.) Setting this value to false can cause the dbfork library to fail because
TotalView might not find the fork(), vfork(), and execve() system calls.

Permitted Values: true or false
Default: true

TV::editor_launch_string: Defines the editor launch string command. The launch
string substitution characters you can use are:

%E: The editor

%F: The display font
Version 6.2 TotalView Reference Guide 181

4
TotalView Variables

TV:: Namespace—TV::force_default_cplus_demangler
%N: The line number

%S: The source file

Permitted Values: Any string value—as this is a Tcl variable, you’ll need to
enclose the string within {} (braces) if the string contains
spaces

Default: {xterm –e %E +%N %S}

TV::force_default_cplus_demangler: When this is set to true, TotalView uses the
demangler set in the TV::current_cplus_demangler variable. You would set this
variable when TotalView uses the wrong demangler. TotalView can use the wrong
demangler if you are using an unsupported compiler, and unsupported language
preprocessor, or if your vendor has made changes to your compiler.

Permitted Values: true or false
Default: false

TV::force_default_f9x_demangler: When this is set to true, TotalView uses the
demangler set in the TV::current_fortran_demangler variable. You would set this
variable when TotalView uses the wrong demangler. TotalView can use the wrong
demangler if you are using an unsupported compiler, and unsupported language
preprocessor, or if your vendor has made changes to your compiler.

Permitted Values: true or false
Default: false

TV::global_typenames: When this is set to true, TotalView assumes that type names
are globally unique within a program and that all type definitions with the same
name are identical. This must be true for standard-conforming C++ compilers.

If you set this option to true, TotalView attempts to replace an opaque type (struct
foo *p;) declared in one module with an identically named defined type (struct foo
{ … };) in a different module.

If TotalView has read the symbols for the module containing the non-opaque type
definition, it will automatically display the variable by using the non-opaque type
definition when displaying variables declared with the opaque type.

If you set this variable to false, TotalView does not assume that type names are glo-
bally unique within a program. Only use this variable if your code has different defi-
182 TotalView Reference Guide Version 6.2

TotalView Variables

TV:: Namespace—TV::kcc_classes
nitions of the same named type since TotalView can pick the wrong definition when
it substitutes for an opaque type in this case.

Permitted Values: true or false
Default: true

TV::ignore_control_c: When this is set to true, TotalView ignores Ctrl+C characters.
This prevents you from inadvertently terminating the TotalView process. You would
set this option to false when your program catches the Ctrl+C (SIGINT) signal.

Permitted Values: true or false
Default: false

TV::image_load_callbacks: Contains a Tcl list of procedures names. TotalView
invokes the procedures named in this list whenever it loads a new image. This could
occur when:

g A user invokes a command such as dload.

g TotalView resolves dynamic library dependencies.

g User code uses dlopen() to load a new image.

TotalView invokes the functions in order, beginning at the first function in this list.

Permitted Values: A Tcl list of procedure names
Default: TV::propagate_prototypes

TV::in_setup: Contains a true value if called while TotalView is being initialized. Your
procedures would read the value of this variable so that code can be conditionally
executed based on whether TotalView is being initialized. In most cases, this is used
for code that should only be invoked while TotalView is being initialized. This is a
read-only variable.

Permitted Values: true or false
Default: false

TV::kcc_classes: When this is set to true, TotalView converts structure definitions
created by the KCC compiler into classes that show base classes and virtual base
classes in the same way as other C++ compilers. When this is set to false,
TotalView does not perform this conversion. In this case, TotalView displays virtual
bases as pointers rather than as the data.
Version 6.2 TotalView Reference Guide 183

4
TotalView Variables

TV:: Namespace—TV::kernel_launch_string
TotalView converts structure definitions by matching the names given to structure
members. This means that TotalView may not convert definitions correctly if your
structure component names look like KCC processed classes. However, TotalView
never converts these definitions unless it believes that the code was compiled with
KCC. (It does this when it sees one of the tag strings that KCC outputs, or when you
use the KCC name demangler.) Because all of the recognized structure component
names start with “_ _” and the C standard forbids this use, your code should not
contain names with this prefix.

Under some circumstances, TotalView may not be able to convert the original type
names because type definition are not available. For example, it may not be able to
convert “struct __SO_foo” to “struct foo”. In this case, TotalView shows the
“__SO_foo” type. This is only a cosmetic problem. (The “__SO__” prefix denotes a
type definition for the nonvirtual components of a class with virtual bases).

Since KCC output does not contain information on the accessibility of base classes
(private, protected, or public), TotalView cannot provide this information.

Permitted Values: true or false
Default: true

TV::kernel_launch_string: This is not currently used.

TV::library_cache_directory: Specifies the directory into which TotalView writes
library cache information.

Permitted Values: A string indicating a path.
Default: $USERNAME/.totalview/lib_cache

TV::local_interface: Sets the interface name that the server uses when it makes a
callback. For example, on an IBM PS2 machine, you would set this to css0. How-
ever, you can use any legal inet interface name. (You can obtain a list of the inter-
faces if you use the netstat -i command.)

Permitted Values: A string
Default: {}

TV::local_server: (Sun only) By default, TotalView finds the local server in the same
place as the remote server. On Sun platforms, TotalView can launch a 32- and 64-bit
version. This variable tells TotalView which local server it should launch.
184 TotalView Reference Guide Version 6.2

TotalView Variables

TV:: Namespace—TV::parallel
Permitted Values: A file or path name to the local server
Default: tvdsvr

TV::local_server_launch_string: (Sun only) If TotalView will not be using the server
contained in the same working directory as the TotalView executable, the contents
of this string indicate the shell command that TotalView uses to launch this alter-
nate server. For information on this launch string, see “Replacement Characters” on
page 219.

Permitted Values: A string enclosed with {} (braces) if it it has embedded spaces
Default: {%M –working_directory %D –local %U –set_pw %P

-verbosity %V}

TV::message_queue: When this is set to true, TotalView displays MPI message
queues when you are debugging an MPI program. When the variable is set to false,
these queues are not displayed. You would disable these queues if something is
overwriting the message queues, thereby confusing TotalView.

Permitted Values: true or false
Default: true

TV::open_cli_window_callback: The CLI executes the string that is this variable’s
value after you open the CLI by selecting the Tools > Command Line command. It
is ignored when you open the CLI from the command line. It is most commonly
used to set the terminal characteristics of the (pseudo) tty that the CLI is using,
since these are inherited from the tty on which TotalView was started. Therefore, if
you start TotalView from a shell running inside an Emacs buffer, the CLI uses the raw
terminal modes that Emacs is using. You can change your terminal mode by adding
the following command to your .tvdrc file:

dset TV::open_cli_window_callback "stty sane"

Permitted Values: A string representing a Tcl or CLI command
Default: Null

TV::parallel: When this is set to true, you are enabling TotalView support for parallel
program runtime libraries such as MPI, PE, and UPC. You might set this to false if
you need to debug a parallel program as if it were a single-process program.
Version 6.2 TotalView Reference Guide 185

4
TotalView Variables

TV:: Namespace—TV::parallel_attach
Permitted Values: true or false
Default: true

TV::parallel_attach: Tells TotalView if it should automatically attach to processes.
Your choices are as follows:

g yes: Attach to all started processes.

g no: Do not attach to any started processes.

g ask: Display a dialog box listing the processes to which TotalView can attach,
and let the user decide to which ones TotalView should attach.

Permitted Values: yes, no, or ask
Default: yes

TV::parallel_stop: Tells TotalView if it should automatically run processes when your
program launches them. Your choices are as follows:

g yes: Stop the processes before they begin executing.

g no: Do not interfere with the processes; that is, let them run.

g ask: Display a question box asking if it should stop before executing.

Permitted Values: yes, no, or ask
Default: ask

TV::platform: Indicates the platform upon which you are running TotalView. This is a
read-only variable.

Permitted Values: One of the following values: alpha, hpux11-hppa, irix6-mips,
linux-x86, linux-alpha, rs6000, and sun5

Default: Platform-specific

TV::process_load_callbacks: Names the procedures that TotalView runs immedi-
ately after it loads a program and just before it runs it. TotalView executes these
procedures after it invokes the procedures in the TV::image_load_callbacks list.

The procedures in this list are only called once even though your executable may
use many programs and libraries.

Permitted Values: A list of procedures
Default: TV::source_process_startup. The default procedure looks looks

for a file with the same name as the newly loaded process’s
executable image that has a .tvd suffix appended to it. If it
186 TotalView Reference Guide Version 6.2

TotalView Variables

TV:: Namespace—TV::server_launch_string
exists, TotalView executes the commands contained within it.
This function is passed an argument that is the ID for the newly
created prcess.

TV::pvm: When this is set to true, TotalView lets you debug the ORNL (Oak Ridge
National Laboratory) implementation of Parallel Virtual Machine (PVM) applications.
This variable can only be set in a start up script. However, you can override this
value by using the following command-line options:

–pvm sets this variable to true

–no_pvm sets this variable to false

Permitted Values: true or false
Default: false

TV::save_window_pipe_or_filename: Names the file to which TotalView writes or
pipes the contents of the current window or pane when you select the File > Save
Pane command.

Permitted Values: A string naming a file or pipe
Default: None, until something is saved. Afterward, the saved string is

the default.

TV::search_case_sensitive: When this is set to true, text searches only succeed if a
string exists whose case exactly matches what you enter in the Edit > Find Dialog
Box. For example, searching for Foo won’t find foo if this variable is set to true. It
will be found if this variable is set to false.

Permitted Values: true or false
Default: false

TV::server_launch_enabled: When this is set to true, TotalView uses its single-pro-
cess server launch procedure when launching remote tvdsvr processes. When the
variable is set to false, tvdsvr is not automatically launched.

Permitted Values: true or false
Default: true

TV::server_launch_string: Names the command string that TotalView uses to auto-
matically launch the TotalView Debugger Server (tvdsvr) when you start to debug a
Version 6.2 TotalView Reference Guide 187

4
TotalView Variables

TV:: Namespace—TV::server_launch_timeout
remote process. This command string is executed by /bin/sh. By default, TotalView
uses the rsh command to start the server, but you can use any other command that
can invoke tvdsvr on a remote host. If no command is available for invoking a
remote process, you can’t automatically launch the server; therefore, you should
set this variable to /bin/false. If you cannot automatically launch a server, you
should also set the TV::server_launch_enabled variable to false. For information
on this launch string, see “Replacement Characters” on page 219.

Permitted Values: A string
Default: {%C %R –n "tvdsvr –working_directory %D –callback %L

-set_pw %P –verbosity %V"}

TV::server_launch_timeout: Specifies the number of seconds that TotalView waits
to hear back from the TotalView Debugger Server (tvdsvr) that it launches.

Permitted Values: An integer from 1 to 3600 (1 hour)
Default: 30

TV::share_action_point: Indicates the scope in which TotalView places newly cre-
ated action points. In the CLI, this is the dbarrier, dbreak, and dwatch commands.
If this Boolean value is true, newly created action point are shared across the
group. If it is false, a newly created action point is only active in the process in
which it is set.

As an alternative to setting this variable, you can select the Plant in share group
check box in the Action Points Page in the File > Preferences Dialog Box. You can
override this value in the GUI by using selecting the Plant in share group checkbox
in the Action Point > Properties Dialog Box.

Permitted Values: true or false
Default: true

TV::signal_handling_mode: The list that you assign to this variable modifies the
way in which TotalView handles signals. This list consists of a list of signal_action
descriptions, separated by spaces:

signal_action[signal_action] ...

A signal_action description consists of an action, an equal sign (=), and a list of sig-
nals:
188 TotalView Reference Guide Version 6.2

TotalView Variables

TV:: Namespace—TV::signal_handling_mode
action=signal_list

An action can be one of the following: Error, Stop, Resend, or Discard.

A signal_list is a list of one or more signal specifiers, separated by commas:

signal_specifier[,signal_specifier] …

A signal_specifier can be a signal name (such as SIGSEGV), a signal number (such as
11), or a star (*), which specifies all signals. We recommend using the signal name
rather than the number because number assignments vary across UNIX versions.

The following rules apply when you are specifying an action_list:

g If you specify an action for a signal in an action_list, TotalView changes the default
action for that signal.

g If you do not specify a signal in the action_list, TotalView does not change its
default action for the signal.

g If you specify a signal that does not exist for the platform, TotalView ignores it.

g If you specify an action for a signal twice, TotalView uses the last action
specified. In other words, TotalView applies the actions from left to right.

If you need to revert the settings for signal handling to TotalView’s built-in defaults,
use the Defaults button in the File > Signals Dialog Box.

For example, to set the default action for the SIGTERM signal to Resend, you specify
the following action list:

{Resend=SIGTERM}

As another example, to set the action for SIGSEGV and SIGBUS to Error, the action
for SIGHUP and SIGTERM to Resend, and all remaining signals to Stop, you specify
the following action list:

{Stop=* Error=SIGSEGV,SIGBUS Resend=SIGHUP,SIGTERM}

This action list shows how TotalView applies the actions from left to right.

1 Sets the action for all signals to Stop.

2 Changes the action for SIGSEGV and SIGBUS from Stop to Error.

3 Changes the action for SIGHUP and SIGTERM from Stop to Resend.

Permitted Values: A list of signals, as was just described
Version 6.2 TotalView Reference Guide 189

4
TotalView Variables

TV:: Namespace—TV::source_pane_tab_width
Default: This differs from platform to platform; type dset
TV::signal_handling_mode to see what a platform’s default
values are

TV::source_pane_tab_width: Sets the width of the tab character that is displayed in
the Process Window’s Source Pane. You may want to set this value to the same
value as you use in your text editor.

Permitted Values: An integer
Default: 8

TV::spell_correction: When you use the View > Lookup Function or View >
Lookup Variable commands in the Process Window or edit a type string in a Vari-
able Window, the debugger checks the spelling of your entries. By default (verbose),
the debugger displays a dialog box before it corrects spelling. You can set this
resource to brief to run the spelling corrector silently. (TotalView makes the spelling
correction without displaying it in a dialog box first.) You can also set this resource
to none to disable the spelling corrector.

Permitted Values: verbose, brief, or none
Default: verbose

TV::stop_all: Indicates a default property for newly created action points. This prop-
erty tells TotalView what else it should stop when it encounters this action point.
The values you can set are as follows:

group Stops the entire control group when the action point is hit.

process Stops the entire process when the action point is hit.

thread Only stops the thread that hit the action point. Note that none is a
synonym for thread.

Permitted Values: group, process, or thread
Default: group

TV::stop_relatives_on_proc_error: When this is set to true, TotalView stops the
control group when an error signal is raised. This is the variable used by the Stop
control group on error signal option in the Options Page of the File > Preferences
Dialog Box.
190 TotalView Reference Guide Version 6.2

TotalView Variables

TV:: Namespace—TV::version
Permitted Values: true or false
Default: true

TV::suffixes: Use a space separated list of items to identify the contents of a file. Each
item on this list has the form: suffix:lang[:include]. You can set more than suffix for
an item. If you want to remove an item from the default list, set its value to
unknown.

Permitted Values: A list identifying how suffixes are used
Default: {:c:include s:asm S:asm c:c h:c:include lex:c:include y:c:include

bmap:c:include f:f77 F:f77 f90:f9x F90:f9x hpf:hpf HPF:hpf
cxx:c++ cpp:c++ cc:c++ c++:c++ C:c++ C++:c++
hxx:c++:include hpp:c++:include hh:c++:include
h++:c++:include HXX:c++:include HPP:c++:include
HH:c++:include H:c++:include ih:c++:include th:c++:include
p:pascal P:pascal pas:pascal PAS:pascal}

TV::ttf: When set to true, TotalView uses registered type transformations to change the
appearance of data types that have been registered using the
TV::type_transformation routine.

Permitted Values: true of false
Default: true

TV::user_threads: When this is set to true, it enables TotalView support for handling
user-level (M:N) thread packages on systems that support two-level (kernel and
user) thread scheduling.

Permitted Values: true or false
Default: true

TV::version: Indicates the current TotalView version. This is a read-only variable.

Permitted Values: A string
Default: Varies from release to release
Version 6.2 TotalView Reference Guide 191

4
TotalView Variables

TV:: Namespace—TV::visualizer_launch_enabled
TV::visualizer_launch_enabled: When this is set to true, TotalView automatically
launches the Visualizer when you first visualize something. If you set this variable to
false, TotalView disables visualization. This is most often used to stop evaluation
points containing a $visualize directive from invoking the Visualizer.

Permitted Values: true or false
Default: true

TV::visualizer_launch_string: Specifies the command string that TotalView uses
when it launches a visualizer. Because the text is actually used as a shell command,
you can use a shell redirection command to write visualization datasets to a file (for
example, “cat > your_file”).

Permitted Values: A string
Default: visualize

TV::visualizer_max_rank: Specifies the default value used in the Maximum
permissible rank field in the Launch Strings Page of the File > Preferences Dialog
Box. This field sets the maximum rank of the array that TotalView will export to a
visualizer. The TotalView Visualizer cannot visualize arrays of rank greater than 2. If
you are using another visualizer or just dumping binary data, you can set this value
to a larger number.

Permitted Values: An integer
Default: 2

TV::warn_step_throw: If this is set to true and your program throws an exception
during a TotalView single-step operation, TotalView asks if you wish to stop the step
operation. The process will be left stopped at the C++ run-time library’s “throw”
routine. If this is set to false, TotalView will not catch C++ exception throws during
single-step operations. Setting it to false may mean that TotalView will lose control
of the process, and you may not be able to control the program.

Permitted Values: true or false
Default: true

TV::wrap_on_search: When this is set to true, TotalView will continue searching from
either the beginning (if Down is also selected in the Edit > Find Dialog Box) or the
end (if Up is also selected) if it doesn’t find what you’re looking for. For example,
192 TotalView Reference Guide Version 6.2

TotalView Variables

TV::GUI:: Namespace—TV::GUI::fixed_font
you search for foo and select the Down button. If TotalView doesn’t find it in the
text between the current position and the end of the file, TotalView will continue
searching from the beginning of the file if you set this option.

Permitted Values: true or false
Default: true

TV::GUI:: Namespace

NOTE The variables in this section only have meaning (and in some cases, a value) when
your are displaying TotalView’s GUI.

TV::GUI::chase_mouse: When this variable is set to true, TotalView displays dialog
boxes at the location of the mouse cursor. If this is set to false, TotalView displays
them centered in the upper third of the screen.

Permitted Values: true or false
Default: true

TV::GUI::display_font_dpi: Indicates the video monitor DPI (dots per inch) at which
fonts are displayed.

Permitted Values: An integer
Default: 75

TV::GUI::enabled: When this is set to true, you invoked the CLI from the GUI or a
startup script. Otherwise, this read-only value is false.

Permitted Values: true or false
Default: true if you are running the GUI even though you are seeing this

in a CLI window; false if you are only running the CLI

TV::GUI::fixed_font: Indicates the specific font TotalView uses when displaying pro-
gram information such as source code in the Process Window or data in the Variable
Window. This variable contains the value set when you select a Code and Data Font
entry in the Fonts Page of the File > Preferences Dialog Box.

This is a read-only variable.
Version 6.2 TotalView Reference Guide 193

4
TotalView Variables

TV::GUI:: Namespace—TV::GUI::fixed_font_family
Permitted Values: A string naming a fixed font residing on your system
Default: While this is platform specific, here is a representative value:

-adobe-courier-medium-r-normal--12-120-75-75-m-70-iso8859-1

TV::GUI::fixed_font_family: Indicates the specific font TotalView uses when display-
ing program information such as source code in the Process Window or data in the
Variable Window. This variable contains the value set when you select a Code and
Data Font entry of the Fonts Page of the File > Preferences Dialog Box.

Permitted Values: A string representing an installed font family
Default: fixed

TV::GUI::fixed_font_size: Indicates the point size at which TotalView displays fixed
font text. This is only useful if you have set a fixed font family because if you set a
fixed font, the value entered contains the point size.

Font sizes are indicated using printer points.

Permitted Values: An integer
Default: 12

TV::GUI::font: Indicates the specific font used when TotalView writes information as
the text in dialog boxes and in menu bars. This variable contains the information
set when you select a Select by full name entry in the Fonts Page of the File >
Preferences Dialog Box.

Permitted Values: While this is platform specific, here is a representative value:
-adobe-helvetica-medium-r-normal--12-120-75-75-p-67-
iso8859-1

Default: helvetica

TV::GUI::force_window_position: Setting this variable to true tells TotalView that it
should use the version 4 window layout algorithm. This algorithm tells the window
manager where to set the window. It also cascades windows from a base location
for each window type. If this is not set, which is the default, newer window manag-
ers such as kwm or Enlightment can use their smart placement modes.

Dialog boxes still chase the pointer as needed and are unaffected by this setting.

Permitted Values: true or false
Default: false
194 TotalView Reference Guide Version 6.2

TotalView Variables

TV::GUI:: Namespace—TV::GUI::geometry_help
TV::GUI::geometry_call_tree: Specifies the position at which TotalView displays the
Tools > Call Tree Window. This position is set using a list containing four values:
the window’s x and y coordinates. These are followed by two more values specify-
ing the windows width and height.

If you set any of these values to 0 (zero), TotalView uses its default value. This
means, however, you cannot tell TotalView to place a window at x, y coordinates of
0, 0. Instead, you’ll need to place the window at 1, 1.

If you specify negative x and y coordinates, TotalView aligns the window to the
opposite edge of the screen.

Permitted Values: A list containing four integers indicating the windows x and y
coordinates and the windows width and height.

Default: {0 0 0 0}

TV::GUI::geometry_cli: Specifies the position at which TotalView displays the
Tools > CLI Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y
coordinates and the window’s width and height.

Default: {0 0 0 0}

TV::GUI::geometry_globals: Specifies the position at which TotalView displays the
Tools > Program Browser Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y
coordinates and the window’s width and height.

Default: {0 0 0 0}

TV::GUI::geometry_help: Specifies the position at which TotalView displays the Help
Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y
coordinates and the window’s width and height.

Default: {0 0 0 0}
Version 6.2 TotalView Reference Guide 195

4
TotalView Variables

TV::GUI:: Namespace—TV::GUI::geometry_memory_stats
TV::GUI::geometry_memory_stats: Specifies the position at which TotalView dis-
plays the Tools > Memory Statistics Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y
coordinate’s and the windows width and height.

Default: {0 0 0 0}

TV::GUI::geometry_message_queue: Specifies the position at which TotalView dis-
plays the Tools > Message Queue Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y
coordinates and the window’s width and height.

Default: {0 0 0 0}

TV::GUI::geometry_message_queue_graph: Specifies the position at which
TotalView displays the Tools > Message Queue Graph Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y
coordinates and the window’s width and height.

Default: {0 0 0 0}

TV::GUI::geometry_modules: Specifies the position at which TotalView displays the
Tools > Fortran Modules Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y
coordinates and the window’s width and height.

Default: {0 0 0 0}

TV::GUI::geometry_process: Specifies the position at which TotalView displays the
Process Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the windows x and y
coordinates and the windows width and height.

Default: {0 0 0 0}
196 TotalView Reference Guide Version 6.2

TotalView Variables

TV::GUI:: Namespace—TV::GUI::geometry_variable
TV::GUI::geometry_ptset: Specifies the position at which TotalView displays the
Tools > P/T Set Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y
coordinates and the window’s width and height.

Default: {0 0 0 0}

TV::GUI::geometry_pvm: Specifies the position at which TotalView displays the
Tools > PVM Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y
coordinates and the window’s width and height.

Default: {0 0 0 0}

TV::GUI::geometry_root: Specifies the position at which TotalView displays the Root
Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y
coordinates and the window’s width and height.

Default: {0 0 0 0}

TV::GUI::geometry_thread_objects: Specifies the position at which TotalView dis-
plays the Tools > Thread Objects Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y
coordinates and the window’s width and height.

Default: {0 0 0 0}

TV::GUI::geometry_variable: Specifies the position at which TotalView displays the
Variable Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y
coordinates and the window’s width and height.

Default: {0 0 0 0}
Version 6.2 TotalView Reference Guide 197

4
TotalView Variables

TV::GUI:: Namespace—TV::GUI::geometry_variable_stats
TV::GUI::geometry_variable_stats: Specifies the position at which TotalView dis-
plays the Tools > Statistics Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y
coordinates and the window’s width and height.

Default: {0 0 0 0}

TV::GUI::keep_search_dialog: When this is set to true, TotalView doesn’t remove
the Edit > Find Dialog Box after you select that dialog box’s Find button. If you
select this option, you will need to select the Close button to dismiss the Edit >
Find box.

Permitted Values: true or false
Default: true

TV::GUI::pop_at_breakpoint: When this is set to true, TotalView sets the Open (or
raise) process window at breakpoint check box to be selected by default. If this
variable is set to false, it sets that check box to be deselected by default.

Permitted Values: true or false
Default: false

TV::GUI::pop_on_error: When this is set to true, TotalView sets the Open process
window on error signal check box in the File > Preferences’s Option Page to be
selected by default. If you set this to false, TotalView sets that check box to be
deselected by default.

Permitted Values: true or false
Default: true

TV::GUI::single_click_dive_enabled: When set, you can perform dive operations
using the middle mouse button. Diving using a left-double-click still works. If you
are editing a field, clicking the middle mouse performs a paste operation.

Permitted Values: true or false
Default: true

TV::GUI::ui_font: Indicates the specific font used when TotalView writes information
as the text in dialog boxes and in menu bars. This variable contains the information
198 TotalView Reference Guide Version 6.2

TotalView Variables

TV::GUI:: Namespace—TV::GUI::version
set when you select a Select by full name entry in the Fonts Page of the File >
Preferences Dialog Box.

Permitted Values: While this is platform specific, here is a representative value:
-adobe-helvetica-medium-r-normal--12-120-75-75-p-67-
iso8859-1

Default: helvetica

TV::GUI::ui_font_family: Indicates the family of fonts that TotalView uses when dis-
playing such information as the text in dialog boxes and menu bars. This variable
contains the information set when you select a Family in the Fonts Page of the File
> Preferences Dialog Box.

Permitted Values: A string
Default: helvetica

TV::GUI::ui_font_size: Indicates the point size at which TotalView writes the font
used for displaying such information as the text in dialog boxes and menu bars.
This variable contains the information set when you select a User Interface Size in
the Fonts Page of the File > Preferences Dialog Box.

Permitted Values: An integer
Default: 12

TV::GUI::using_color: Not implemented.

TV::GUI::using_text_color: Not implemented.

TV::GUI::using_title_color: Not implemented.

TV::GUI::version: This number indicates which version of the TotalView GUI is being
displayed. This is a read-only variable.

Permitted Values: A number
Version 6.2 TotalView Reference Guide 199

4
TotalView Variables

TV::GUI:: Namespace—TV::GUI::version
200 TotalView Reference Guide Version 6.2

Version 6.2
Chapter 5
Default Arena Widths
This chapter lists all CLI commands and their default arena widths. Commands in the TV::
namespace and commands that are not debugger related (for example, alias and help)
are not shown as either focus is not relevant or is obvious (for example, focus_groups).

Command Default Arena Width

dactions process

dassign thread; if the current width is “process”, dassign acts on
each thread in the process

dattach —

dbarrier Obtains focus width from the setting of the
SHARE_ACTION_POINT variable; if true, the default is
“group;” if false, the default is “process”

dbreak Obtains focus width from the setting of the
SHARE_ACTION_POINT variable; if true, the default is
“group;” if false, the default is “process”

dcache —

dcheckpoint process

dcont process

ddelete process

ddetach process

ddisable process

ddown thread; if the current width is “process,” ddown acts on
each thread in the process

denable process
TotalView Reference Guide 201

5
Default Arena Widths
dflush thread

dfocus —

dgo process

dgroups The –list option ignores the focus; other options use
group width to find the groups being operated on and
thread width to find the operands

dhalt process

dhold depends on the –thread or –process option

dkill process; note that killing the primary process for a control
group always kills all of its slaves

dlappend —

dlist thread; if the current width is “process,” dlist iterates over
all threads in the process

dload —

dmstat process

dnext process

dnexti process

dout process

dprint thread; if the current width is “process”, dprint acts on
each thread in the process

dptsets —

drerun process

drestart —

drun process

dset —

dstatus process

dstep process

dstepi process

dunhold depends on the –thread or –process option

dunset —

Command Default Arena Width
202 TotalView Reference Guide Version 6.2

Default Arena Widths
duntil process

dup thread; if the current width is “process, dup acts on each
thread in the process

dwait process

dwatch Obtains focus from the SHARE_ACTION_POINT vari-
able’s setting

true: default to group

false: default to process

dwhat thread; if the current width is “process,” dwhat acts on
each thread in the process

dwhere thread; if the current width is “process,” dwhere acts on
each thread in the process

dworker thread

Command Default Arena Width
Version 6.2 TotalView Reference Guide 203

5
Default Arena Widths
204 TotalView Reference Guide Version 6.2

Part II: Running TotalView
This section of the TotalView Reference Guide contains information about command-line
options you use when starting TotalView and the TotalView Debugger Server.

Chapter 6: TotalView Command Syntax
TotalView contains a great number of command-line options. Many
of these options allow you to override TotalView’s default behavior or
a behavior that you’ve set in a preference or a startup file.

In previous releases, using options was the best way to set
TotalView’s behavior. Beginning with Release 6.0, you are better
served by setting a preference or a CLI variable.

Chapter 7: TotalView Debugger Server (tvdsvr) Command Syntax
This chapter describes how you modify the behavior of the tvdsvr.
These options are most often used if a problem occurs in launching
the server or if you have some very specialized need. In most cases,
you can ignore the information in this chapter.
Version 6.2 TotalView Reference Guide 205

206 TotalView Reference Guide Version 6.2

Version 6.2
Chapter 6
TotalView Command Syntax
This chapter describes the syntax of the totalview command. Topics in this chapter are:

g Syntax
g Options

Syntax

Synopsis: totalview [filename [corefile]] [options]

Description: The TotalView debugger is a source-level debugger with a motif-
based graphic user interface and features for debugging distributed programs, mul-
tiprocess programs, and multithreaded programs. TotalView is available on a num-
ber of different platforms.

Arguments:

filename Specifies the path name of the executable being debugged.
This can be an absolute or relative path name. The executable
must be compiled with debugging symbols turned on, nor-
mally the –g compiler option. Any multiprocess programs that
call fork(), vfork(), or execve() should be linked with the
dbfork library.

corefile Specifies the name of a core file. Use this argument in addition
to filename when you want to examine a core file with TotalView.

Using Options : If you specify mutually exclusive options on the same com-
mand line (for example, –dynamic and –no_dynamic), the last option listed is used.
TotalView Reference Guide 207

–
TotalView Command Syntax

–a args
Options

–a args Pass all subsequent arguments (specified by args) to the pro-
gram specified by filename. This option must be the last one on
the command line.

–background color
Sets the general background color to color.

Default: light blue

–bg color Same as –background.

–compiler_vars (Alpha, HP, and SGI only.) Shows variables created by the For-
tran compiler, as well as those in the user’s program.

Some Fortran compilers (HP f90/f77, HP f90, SGI 7.2 compil-
ers) output debugging information that describes variables the
compiler itself has invented for purposes such as passing the
length of character*(*) variables. By default, TotalView sup-
presses the display of these compiler-generated variables.

However, you can specify the –compiler_vars option to dis-
play these variables. This is useful when you are looking for a
corruption of a run-time descriptor or are writing a compiler.

–no_compiler_vars
(Default) Tells TotalView that it should not show variables cre-
ated by the Fortran compiler.

–dbfork (Default) Catches the fork(), vfork(), and execve() system calls
if your executable is linked with the dbfork library.

–no_dbfork Tells TotalView that it should not catch fork(), vfork(), and
execve() system calls even if your executable is linked with the
dbfork library.

–debug_file consoleoutputfile
Redirects TotalView console output to a file named consoleout-
putfile.

Default: All TotalView console output is written to stderr.

–demangler=compiler
Overrides the demangler and mangler TotalView uses by
default. The following indicate override options.
208 TotalView Reference Guide Version 6.2

TotalView Command Syntax

–dpvm
–demangler=compaq HP cxx on Linux (alpha)

–demangler=dec HP Tru64 C++ or Fortran

–demangler=gnu GNU C++ on Linux Alpha

–demangler=gnu_dot GNU C++ on Linux x86

-demangler=gnu_v3 GNU C++ Linux x86

–demangler=hp HP aCC compiler

–demangler=irix SGI IRIX C++

–demangler=kai KAI C++

–demangler=kai3_n KAI C++ version 3.n

-demangler=kai_4_0 KAI C++

–demangler=spro SunPro C++ 4.0 or 4.2

–demangler=spro5 SunPro C++ 5.0 or later

–demangler=sun Sun CFRONT C++

–demangler=xlc IBM XLC/VAC++ compilers

–display displayname
Set the name of the X Windows display to displayname. For
example, –display vinnie:0.0 will display TotalView on the
machine named “vinnie.”

Default: The value of your DISPLAY environment variable.

–dll_ignore_prefix list
The colon-separated argument to this option tells TotalView
that it should ignore files having this prefix when making a
decision to ask about stopping the process when it dlopens a
dynamic library. If the DLL being opened has any of the entries
on this list as a prefix, the question is not asked.

–dll_stop_suffix list
The colon-separated argument to this option tells TotalView
that if the library being opened has any of the entries on this
list as a suffix, it should ask if it should open the library.

–dpvm HP Tru64 UNIX only: Enable support for debugging the HP
Tru64 UNIX implementation of Parallel Virtual Machine (PVM)
applications.
Version 6.2 TotalView Reference Guide 209

–
TotalView Command Syntax

–dump_core
–no_dpvm HP Tru64 UNIX only: (Default) Disables support for debugging
the HP Tru64 UNIX implementation of PVM applications.

–dump_core Allows TotalView to dump a core file of itself when an internal
error occurs. This is used to help Etnus debug TotalView prob-
lems.

–no_dumpcore (Default) Does not allow TotalView to dump a core file when it
gets an internal error.

-e commands Tells TotalView to immediately execute the CLI commands
named within this argument. All information you enter here is
sent directly to the CLI’s Tcl interpreter. For example, the fol-
lowing writes a string to stdout:

cli -e 'puts hello'

You can have more than one –e option on a command line.

–foreground color Sets the general foreground color (that is, the text color) to
color.

Default: black

–fg color Same as –foreground.

–f9x_demangler=compiler
Overrides the Fortran demangler and mangler TotalView uses
by default. The following indicate override options.

–demangler=spro_f9x_4 SunPro Fortran, 4.0 or later

–demangler=xlf IBM Fortran

–global_types (Default) Lets TotalView assume that type names are globally
unique within a program and that all type definitions with the
same name are identical. In C++, the standard asserts that
this must be true for standard-conforming code.

If this option is set, TotalView will attempt to replace an
opaque type (struct foo *p;) declared in one module, with an
identically named defined type in a different module.

If TotalView has read the symbols for the module containing
the non-opaque type definition, then when displaying vari-
ables declared with the opaque type, TotalView will automati-
cally display the variable by using the non-opaque type
definition.
210 TotalView Reference Guide Version 6.2

TotalView Command Syntax

–patch_area_base address
–no_global_types
Specifies that TotalView cannot assume that type names are
globally unique in a program. You should specify this option if
your code has multiple different definitions of the same
named type, since otherwise TotalView can use the wrong defi-
nition for an opaque type.

–kcc_classes (Default) Converts structure definitions output by the KCC
compiler into classes that show base classes and virtual base
classes in the same way as other C++ compilers. See the
description of the TV::kcc_classes variable for a description of
the conversions that TotalView performs.

–no_kcc_classes
Specifies that TotalView will not convert structure definitions
output by the KCC compiler into classes. Virtual bases will
show up as pointers, rather than as data.

–lb (Default) Loads action points automatically from the file-
name.TVD.v3breakpoints file, providing the file exists.

–nlb Tells TotalView that it should not automatically load action
points from an action points file.

–message_queue (Default) Enables the display of MPI message queues when
debugging an MPI program.

–mqd Same as –message_queue.

–no_message_queue
Disables the display of MPI message queues when you are
debugging an MPI program. This might be useful if something
is overwriting the message queues and causing TotalView to
become confused.

–no_mqd Same as –no_message_queue.

–parallel (Default) Enables handling of parallel program run-time librar-
ies such as MPI, PE, and UPC.

–no_parallel Disables handling of parallel program run-time libraries such
as MPI, PE, and UPC. This is useful for debugging parallel pro-
grams as if they were single-process programs.

–patch_area_base address
Allocates the patch space dynamically at the given address. See
“Allocating Patch Space for Compiled Expressions” in Chapter 14 of
the TOTALVIEW USERS GUIDE.
Version 6.2 TotalView Reference Guide 211

-
TotalView Command Syntax

–patch_area_length length
–patch_area_length length
Sets the length of the dynamically allocated patch space to
the specified length. See “Allocating Patch Space for Compiled
Expressions” in Chapter 14 of the TOTALVIEW USERS GUIDE.

–pid pid Tells TotalView to attach to process pid after it starts executing.

–pvm Enables support for debugging the ORNL implementation of
Parallel Virtual Machine (PVM) applications.

–no_pvm (Default) Disables support for debugging the ORNL implemen-
tation of PVM applications.

–remote hostname[:portnumber]
Debugs an executable that is not running on the same
machine as TotalView. For hostname, you can specify a TCP/IP
host name (such as vinnie) or a TCP/IP address (such as
128.89.0.16). Optionally, you can specify a TCP/IP port num-
ber for portnumber, such as :4174. When you specify a port
number, you disable the autolaunch feature. For more infor-
mation on the autolaunch feature, see “Setting Single Process
Server Launch” in Chapter 14 of the TOTALVIEW USERS GUIDE.

–r hostname[:portnumber]
Same as –remote.

–s pathname Specifies the path name of a startup file that will be loaded
and executed. This path name can be either an absolute or rel-
ative name.

You can have more than one –s option on a command line.

–serial device[:options]
Debugs an executable that is not running on the same
machine as TotalView. For device, specify the device name of a
serial line, such as /dev/com1. Currently, the only option you
are allowed to specify is the baud rate, which defaults to
38400. For more information on debugging over a serial line,
see “Debugging Over a Serial Line” in Chapter 4 of the TOTALVIEW
USERS GUIDE.

-search_path pathlist
Specify a colon-separated list of directories that TotalView will
search when it looks for source files. For example:

totalview -search_path proj/bin:proj/util
212 TotalView Reference Guide Version 6.2

TotalView Command Syntax

–signal_handling_mode “action_list”
–signal_handling_mode “action_list”
Modifies the way in which TotalView handles signals. You must
enclose the action_list string in quotation marks to protect it
from the shell.

An action_list consists of a list of signal_action descriptions sep-
arated by spaces:

signal_action[signal_action] ...

A signal action description consists of an action, an equal sign
(=), and a list of signals:

action=signal_list

An action can be one of the following: Error, Stop, Resend, or
Discard, For more information on the meaning of each action,
see Chapter 3 of the TOTALVIEW USERS GUIDE.

A signal_specifier can be a signal name (such as SIGSEGV), a sig-
nal number (such as 11), or a star (*), which specifies all sig-
nals. We recommend that you use the signal name rather than
the number because number assignments vary across UNIX
sessions.

The following rules apply when you are specifying an action_list:

(1) If you specify an action for a signal in an action_list,
TotalView changes the default action for that signal.

(2) If you do not specify a signal in the action_list, TotalView
does not change its default action for the signal.

(3) If you specify a signal that does not exist for the platform,
TotalView ignores it.

(4) If you specify an action for a signal more than once,
TotalView uses the last action specified.

If you need to revert the settings for signal handling to
TotalView’s built-in defaults, use the Defaults button in the
File > Signals dialog box.

For example, here’s how to set the default action for the
SIGTERM signal to resend:

“Resend=SIGTERM”
Version 6.2 TotalView Reference Guide 213

–
TotalView Command Syntax

–shm “action_list”
Here’s how to set the action for SIGSEGV and SIGBUS to error,
the action for SIGHUP to resend, and all remaining signals to
stop:

“Stop=* Error=SIGSEGV,SIGBUS Resend=SIGHUP”

–shm “action_list” Same as –signal_handling_mode.

-tvhome pathname
The directory from which TotalView reads preferences and
other related information and the directory to which it writes
this information.

–user_threads (Default) Enables handling of user-level (M:N) thread packages
on systems where two-level (kernel and user) thread schedul-
ing is supported.

–no_user_threads
Disables handling of user-level (M:N) thread packages. This
option may be useful in situations where you need to debug
kernel-level threads, but in most cases, this option is of little
use on systems where two-level thread scheduling is used.

–verbosity level Sets the verbosity level of TotalView-generated messages to
level, which may be one of silent, error, warning, or info.

Default: info
214 TotalView Reference Guide Version 6.2

Version 6.2
Chapter 7
TotalView Debugger
Server (tvdsvr) Command Syntax
This chapter summarizes the syntax of the TotalView Debugger Server command, tvdsvr,
which is used for remote debugging. For more information on remote debugging, refer
to “Setting Up Remote Debugging Sessions” in the TotalView Users Guide.

Topics in this chapter are:

g The tvdsvr Command and Its Options
g Replacement Characters

The tvdsvr Command and Its Options

Synopsis: tvdsvr {–server | –callback hostname:port | –serial device}
[other options]

Description: The tvdsvr debugger server allows TotalView to control and
debug a program on a remote machine. To accomplish this, the tvdsvr program
must run on the remote machine, and it must have access to the executables being
debugged. These executables must have the same absolute path name as the exe-
cutable that TotalView is debugging, or the PATH environment variable for tvdsvr
must include the directories containing the executables.

You must specify a –server, –callback, or –serial option with the tvdsvr command.
By default, TotalView automatically launches tvdsvr using the –callback option, and
the server establishes a connection with TotalView. (Automatically launching the
server is called autolaunching.)
TotalView Reference Guide 215

–
TotalView Debugger Server (tvdsvr) Command Syntax

–callback hostname:port
If you prefer not to automatically launch the server, you can start tvdsvr manually
and specify the –server option. Be sure to note the password that tvdsvr prints out
with the message:

pw = hexnumhigh:hexnumlow

TotalView will prompt you for hexnumhigh:hexnumlow later. By default, tvdsvr auto-
matically generates a password that it uses when establishing connections. If
desired, you can set your own password by using the –set_pw option.

To connect to the tvdsvr from TotalView, you use the Fille > New Program Dialog
Box and must specify the host name and TCP/IP port number, hostname:portnumber
on which tvdsvr is running. Then, TotalView prompts you for the password for
tvdsvr.

Options: The following options name the port numbers and passwords that
TotalView uses to connect with tvdsvr.

–callback hostname:port
(Autolaunch feature only) Immediately establishes a connec-
tion with a TotalView process running on hostname and listening
on port, where hostname is either a host name or TCP/IP
address. If tvdsvr cannot connect with TotalView, it exits.

If you use the –port, –search_port, or –server options with
this option, tvdsvr ignores them.

–callback_host hostname
Names the host upon which the callback is made. The hostname
argument indicates the machine upon which TotalView is run-
ning. This option is most often used with a bulk launch.

–callback_ports port-list
Names the ports on the host machines that are used for call-
backs. The port-list argument contains a comma-separated list
of the host names and TCP/IP port numbers (hostname:port,host-
name:port...) on which TotalView is listening for connections
from tvdsvr. This option is most often used with a bulk launch.

For more information, see Chapter 4, “Setting Up Remote Debug-
ging Sessions” in the TOTALVIEW USERS GUIDE.
216 TotalView Reference Guide Version 6.2

TotalView Debugger Server (tvdsvr) Command Syntax

–serial device[:options]
–debug_file consoleo_utputfile
Redirects TotalView Debugger Server console output to a file
named console_outputfile.

Default: All console output is written to stderr.

–dpvm Uses the HP Tru64 UNIX implementation of the Parallel Virtual
Machine (DPVM) library process as its input channel and regis-
ters itself as the DPVM tasker.

NOTE This option is not intended for users launching tvdsvr man-
ually. When you enable DPVM support within TotalView, TotalView
automatically uses this option when it launches tvdsvr.

–port number Sets the TCP/IP port number on which tvdsvr should commu-
nicate with totalview. If this TCP/IP port number is busy, tvdsvr
does not select an alternate port number (that is, it communi-
cates with nothing) unless you also specify –search_port.

Default: 4142

–pvm Uses the ORNL implementation of the Parallel Virtual Machine
(PVM) library process as its input channel and registers itself as
the ORNL PVM tasker.

NOTE This option is not intended for users launching tvdsvr man-
ually. When you enable PVM support within TotalView, TotalView
automatically uses this option when it launches tvdsvr.

–search_port Searches for an available TCP/IP port number, beginning with
the default port (4142) or the port set with the –port option
and continuing until one is found. When the port number is
set, tvdsvr displays the chosen port number with the following
message:

port = number

Be sure that you remember this port number, since you will
need it when you are connecting to this server from TotalView.

–serial device[:options]
Waits for a serial line connection from TotalView. For device,
specifies the device name of a serial line, such as /dev/com1.
The only option you can specify is the baud rate, which defaults
to 38400. For more information on debugging over a serial
Version 6.2 TotalView Reference Guide 217

–
TotalView Debugger Server (tvdsvr) Command Syntax

–server
line, see “Debugging Over a Serial Line” in Chapter 4 of the
TOTALVIEW USERS GUIDE.

–server Listens for and accepts network connections on port 4142
(default).

Using –server can be a security problem. Consequently, you
must explicitly enable this feature by placing an empty file
named tvdsvr.conf in your /etc directory. This file must be
owned by user ID 0 (root). When tvdsvr encounters this
option, it checks if this file exists. This file’s contents are
ignored.

You can use a different port by using one of the following
options: –search_port or –port. To stop tvdsvr from listening
and accepting network connections, you must terminate it by
pressing Ctrl+C in the terminal window from which it was
started or by using the kill command.

–set_pw hexnumhigh:hexnumlow
Sets the password to the 64-bit number specified by the two
32-bit numbers hexnumhigh and hexnumlow. When a connection
is established between tvdsvr and TotalView, the 64-bit pass-
word passed by TotalView must match the password set with
this option. When the password is set, tvdsvr displays the
selected number in the following message:

pw = hexnumhigh:hexnumlow

We recommend using this option to avoid connections by
other users.

NOTE If necessary, you can disable password checking by specify-
ing the “–set_pw 0:0” option with the tvdsvr command. Disabling
password checking is dangerous; it allows anyone to connect to
your server and start programs, including shell commands, using
your UID. Therefore, we do not recommend disabling password
checking.

–set_pws password-list
Sets 64-bit passwords. TotalView must supply these pass-
words when tvdsvr establishes the connection with it. The
argument to this command is a comma-separated list of pass-
words that TotalView automatically generates. This option is
most often used with a bulk launch.
218 TotalView Reference Guide Version 6.2

TotalView Debugger Server (tvdsvr) Command Syntax

%H
For more information, see Chapter 4, “Setting Up Remote Debug-
ging Sessions” in the TOTALVIEW USERS GUIDE.

–verbosity level Sets the verbosity level of TotalView Debugger Server-gener-
ated messages to level, which may be one of silent, error,
warning, or info.

Default: info

–working_directory directory
Makes directory the directory to which TotalView will be con-
nected.

Note that the command assumes that the host machine and
the target machine mount identical file systems. That is, the
path name of the directory to which TotalView is connected
must be identical on both the host and target machines.

After performing this operation, the TotalView Debugger Server
is started.

Replacement Characters

When placing a tvdsvr command in a Server Launch or Bulk Launch string (see the
File > Preferences command within the online Help for more information), you will
need to use special replacement characters. When your program needs to launch a
remote process, TotalView replaces these command characters with what they rep-
resent. Here are the replacement characters:

%C Expands to the bin directory where tvdsvr is installed.

%C Is replaced by the name of the server launch command being
used. On most platforms, this is rsh. On HP, this command is
remsh. If the TVDSVRLAUNCHCMD environment variable
exists, TotalView will use its value instead of its platform-spe-
cific value.

%D Is replaced by the absolute path name of the directory to
which TotalView will be connected.

%H Expands to the host name of the machine upon which
TotalView is running. (This replacement character is most often
used in bulk server launch commands. However, it can be used
Version 6.2 TotalView Reference Guide 219

%L
TotalView Debugger Server (tvdsvr) Command Syntax

%L
in a regular server launch and within a tvdsvr command con-
tained within a temporary file.)

%L If TotalView is launching one process, this is replaced by the
host name and TCP/IP port number (hostname:port) on which
TotalView is listening for connections from tvdsvr.

If a bulk launch is being performed, TotalView replaces this
with a comma-separated list of the host names and TCP/IP
port numbers (hostname:port,hostname:port...) on which TotalView
is listening for connections from tvdsvr.

For more information, see Chapter 4, “Setting Up Remote Debug-
ging Sessions” in the TOTALVIEW USERS GUIDE.

%N Is replaced by the number of servers that TotalView will launch.
This is only used in a bulk server launch command.

%P If TotalView is launching one process, this is replaced by the
password that TotalView automatically generated.

If a bulk launch is being performed, TotalView replaces this
with a comma-separated list of 64-bit passwords.

%R Is replaced by the host name of the remote machine specified
in the File > New Program command.

%S If TotalView is launching one process, it replaces this symbol
with the port number on the machine upon which the debug-
ger is running.

If a bulk server launch is being performed, TotalView replaces
this with a comma-separated list of port numbers.

%t1 and %t2 Is replaced by files that TotalView creates containing informa-
tion it generates. This is only available in a bulk launch.

These temporary files have the following structure:

(1) An optional header line containing initialization com-
mands required by your system.

(2) One line for each host being connected to, containing
host-specific information.

(3) An optional trailer line containing information needed by
your system to terminate the temporary file.
220 TotalView Reference Guide Version 6.2

TotalView Debugger Server (tvdsvr) Command Syntax

%V
The File > Preferences Bulk Server Page allows you to define
templates for the contents of temporary files. These files may
use these replacement characters. The %N, %t1, and %t2
replacement characters can only be used within header and
trailer lines of temporary files. All other characters can be used
in header or trailer lines or within a host line defining the com-
mand that initiates a single-process server launch. In header
or trailer lines, they behave as defined for a bulk launch within
the host line. Otherwise, they behave as defined for a single-
server launch

The templates for temporary files can also be set using X
resources.

%V Is replaced by the current TotalView verbosity setting.
Version 6.2 TotalView Reference Guide 221

%V
TotalView Debugger Server (tvdsvr) Command Syntax

%V
222 TotalView Reference Guide Version 6.2

Part III: Platforms and
Operating Systems
The three chapters in this part of the Reference Guide describe information that is
unique to the computers, operating systems, and environments in which TotalView runs.

Chapter 8: Compilers and Platforms
Here you will find general information on the compilers and runtime
environments that TotalView supports. This chapter also contains
commands for starting TotalView and information on linking with the
dbfork library.

Chapter 9: Operating Systems
While how you use TotalView is the same on all operating systems,
there are some things you will need to know that are differ from plat-
form to platform.

Chapter 10: Architectures
When debugging assembly-level functions, you will need to know how
TotalView refers to your machines registers.
Version 6.2 TotalView Reference Guide 223

224 TotalView Reference Guide Version 6.2

Version 6.2
Chapter 8
Compilers and Platforms
This chapter describes the compilers and parallel runtime environments used on plat-
forms supported by TotalView. You must refer to the TotalView Release Notes included in
the TotalView distribution for information on the specific compiler and runtime environ-
ment supported by TotalView.

For information on supported operating systems, please refer to Chapter 9, “Operating
Systems” on page 237.

Topics in this chapter are:

g Compiling with Debugging Symbols
g Using Exception Data on HP Tru64 UNIX
g Linking with the dbfork Library

Compiling with Debugging Symbols
You need to compile programs with the –g option and possibly other compiler
options so that debugging symbols are included. This section shows the specific
compiler commands to use for each compiler that TotalView supports.

NOTE Please refer to the release notes in your TotalView distribution for the latest informa-
tion about supported versions of the compilers and parallel runtime environments listed here.
TotalView Reference Guide 225

8
Compilers and Platforms

Compiling with Debugging Symbols
HP Alpha Running Linux

Table 3 lists the procedures to compile programs on HP Alpha running Linux.

HP Tru64 UNIX

Table 4 lists the procedures to compile programs on HP Tru64 UNIX.

When compiling with KCC for debugging, we recommend that you use the +K0
option and not the –g option. Also, the –WG,–cmpo=i option to the guidef77
command may not be required on all versions because –g can imply these options.

TABLE 3: Compiling with Debugging Symbols on HP Alpha Linux

Compiler Compiler Command Line
HP Alpha Linux C ccc –g program.c
HP Alpha Linux Fortran cfal –g program.f
GCC EGCS C gcc –g program.c
GCC EGCS C++ g++ –g program.cxx
GCC EGCS Fortran g77 –g program.f

TABLE 4: Compiling with Debugging Symbols on HP Tru64 UNIX

Compiler Compiler Command Line
HP Tru64 UNIX C cc –g program.c
HP Tru64 UNIX C++ cxx –g program.cxx
HP Tru64 UNIX Fortran 77 f77 –g program.f
HP Tru64 UNIX Fortran 90 f90 –g program.f90
HP Tru64 UPC compiler upc -g [-fthreads n] program.upc
GCC EGCS C gcc –g program.c
GCC EGCS C++ g++ –g program.cxx
KAI C KCC +K0 program.c
KAI C++ KCC +K0 program.cxx
KAI Guide C (OpenMP) guidec –g +K0 program.c
KAI Guide C++ (OpenMP) guidec –g +K0 program.cxx
KAI Guide F77 (OpenMP) guidef77 –g –WG,–cmpo=i program.f
226 TotalView Reference Guide Version 6.2

Compilers and Platforms

Compiling with Debugging Symbols
HP-UX

Table 5 lists the procedures to compile programs on HP-UX.

When compiling with KCC for debugging, we recommend that you use the +K0
option and not the –g option. Also, the –WG,–cmpo=i option to the guidef77
command may not be required on all versions because –g can imply these options.

IBM AIX on RS/6000 Systems

Table 6 lists the procedures to compile programs on IBM RS/6000 systems running
AIX.

TABLE 5: Compiling with Debugging Symbols on HP-UX

Compiler Compiler Command Line
HP ANSI C cc –g program.c
HP C++ aCC –g program.cxx
HP Fortran 90 f90 –g program.f90
KAI C KCC +K0 program.c
KAI C++ KCC +K0 program.cxx
KAI Guide C (OpenMP) guidec –g +K0 program.c
KAI Guide C++ (OpenMP) guidec –g +K0 program.cxx
KAI Guide F77 (OpenMP) guidef77 –g –WG,–cmpo=i program.f

TABLE 6: Compiling with Debugging Symbols on AIX

Compiler Compiler Command Line
GCC EGCS C gcc –g program.c
GCC EGCS C++ g++ –g program.cxx
IBM xlc C xlc –g program.c
IBM xlC C++ xlC –g program.cxx
IBM xlf Fortran 77 xlf –g program.f
IBM xlf90 Fortran 90 xlf90 –g program.f90
KAI C KCC +K0 –qnofullpath program.c
KAI C++ KCC +K0 –qnofullpath program.cxx
KAI Guide C (OpenMP) guidec –g +K0 program.c
Version 6.2 TotalView Reference Guide 227

8
Compilers and Platforms

Compiling with Debugging Symbols
You should not define any of the following variables when debugging threaded
applications:

g AIXTHREAD_DEBUG

g AIXTHREAD_COND_DEBUG

g AIXTHREAD_MUTEX_DEBUG

g AIXTHREAD_RWLOCK_DEBUG

When compiling with KCC, you must specify the –qnofullpath option; KCC is a pre-
processor that passes its output to the IBM xlc C compiler. It will discard #line
directives necessary for source-level debugging if you do not use the –qfullpath
option. We also recommend that you use the +K0 option and not the –g option.

When compiling with guidef77, the –WG,–cmpo=i option may not be required on
all versions because –g can imply these options.

When compiling Fortran programs with the C preprocessor, pass the –d option to
the compiler driver. For example: xlf –d –g program.F

If you will be moving any program compiled with any of the IBM xl compilers from
its creation directory, or you do not want to set the search directory path during
debugging, use the –qfullpath compiler option. For example:

xlf –qfullpath –g –c program.f

Linux Running on an x86 Platform

Table 7 lists the procedures to compile programs on Linux x86 platforms.

KAI Guide C++ (OpenMP) guidec –g +K0 program.cxx
KAI Guide F77 (OpenMP) guidef77 –g –WG,–cmpo=i program.f

TABLE 7: Compiling with Debugging Symbols on Linux x86

Compiler Compiler Command Line
GCC EGCS C gcc –g program.c
GCC EGCS C++ g++ –g program.cxx
Intel C++ Compiler icc –g program.cxx

TABLE 6: Compiling with Debugging Symbols on AIX (cont.)

Compiler Compiler Command Line
228 TotalView Reference Guide Version 6.2

Compilers and Platforms

Compiling with Debugging Symbols
When compiling with KCC for debugging, we recommend that you use the +K0
option and not the –g option. Also, the –WG,–cmpo=i option to the guidef77
command may not be required on all versions because –g can imply these options.

SGI IRIX-MIPS Systems

Table 8 lists the procedures to compile programs on SGI MIPS systems running
IRIX.

Intel Fortran Compiler ifc –g program.f
KAI C KCC +K0 program.c
KAI C++ KCC +K0 program.cxx
KAI Guide C (OpenMP) guidec –g +K0 program.c
KAI Guide C++ (OpenMP) guidec –g +K0 program.cxx
KAI Guide F77 (OpenMP) guidef77 –g –WG,–cmpo=i program.f
Lahey/Fujitsu Fortran lf95 –g program.f
PGI Fortran 90 pgf90 –g program.f

TABLE 8: Compiling with Debugging Symbols on IRIX-MIPS

Compiler Compiler Command Line
GCC EGCS C gcc –g program.c
GCC EGCS C++ g++ –g program.cxx
Intrepid (GCC UPC(upc -g [-fthreads n] program.upc
KAI C KCC +K0 program.c
KAI C++ KCC +K0 program.cxx
KAI Guide C (OpenMP) guidec –g +K0 program.c
KAI Guide C++ (OpenMP) guidec –g +K0 program.cxx
KAI Guide F77 (OpenMP) guidef77 –g –WG,–cmpo=i program.f
SGI MIPSpro 90 f90 –n32 –g program.f90

f90 –64 –g program.f90
SGI MIPSpro C cc –n32 –g program.c

cc –64 –g program.c

TABLE 7: Compiling with Debugging Symbols on Linux x86 (cont.)

Compiler Compiler Command Line
Version 6.2 TotalView Reference Guide 229

8
Compilers and Platforms

Compiling with Debugging Symbols
You cannot compile your program using either of the –n32 or –64 command line
options. TotalView does not support compiling with –32, which is the default for
some compilers. You must specify either –n32 or –64.

When compiling with KCC for debugging, we recommend that you use the +K0
option and not the –g option. Also, the –WG,–cmpo=i option to the guidef77
command may not be required on all versions because –g can imply these options.

SunOS 5 on SPARC

Table 9 lists the procedures to compile programs on SunOS 5 SPARC.

SGI MIPSpro C++ CC –n32 –g program.cxx
CC –64 –g program.cxx

SGI MIPSpro77 f77 –n32 –g program.f
f77 –64 –g program.f

TABLE 9: Compiling with Debugging Symbols on SunOS 5

Compiler Compiler Command Line
Apogee C apcc –g program.c
Apogee C++ apcc –g program.cxx
GCC EGCS C gcc –g program.c
GCC EGCS C++ g++ –g program.cxx
KAI C KCC +K0 program.c
KAI C++ KCC +K0 program.cxx
KAI Guide C (OpenMP) guidec –g +K0 program.c
KAI Guide C++ (OpenMP) guidec –g +K0 program.cxx
KAI Guide F77 (OpenMP) guidef77 –g –WG,–cmpo=i program.f
SunPro/WorkShop C cc –g program.c
SunPro/WorkShop C++ CC –g program.cxx
SunPro/WorkShop Fortran 77 f77 –g program.f
WorkShop Fortran 90 f90 –g program.f90

TABLE 8: Compiling with Debugging Symbols on IRIX-MIPS (cont.)

Compiler Compiler Command Line
230 TotalView Reference Guide Version 6.2

Compilers and Platforms

Using Exception Data on HP Tru64 UNIX
When compiling with KCC for debugging, we recommend that you use the +K0
option and not the –g option. Also, the –WG,–cmpo=i option to the guidef77
command may not be required on all versions because –g can imply these options.

Using Exception Data on HP Tru64 UNIX

If you receive the following error message when you load an executable into
TotalView, you may need to compile your program so that it includes exception
data.

Cannot find exception information. Stack backtraces may
not be correct.

To provide a complete stack backtrace in all situations, TotalView needs for you to
include exception data with the compiled executable. To compile with exception
data, you need to use the following options:

cc –Wl,–u,_fpdata_size program.c

where:

–Wl Passes the arguments that follow to another compilation
phase (–W), which in this case is the linker (l). Each argument
is separated by a comma (,).

–u,_fpdata_size Causes the linker to mark the next argument (_fpdata_size) as
undefined. This forces the exception data into the executable.

program.c Is the name of your program.

Compiling with exception data increases the size of your executable slightly. If you
choose not to compile with exception data, TotalView can provide correct stack
backtraces in most situations, but not in all situations.

Linking with the dbfork Library

If your program uses the fork() and execve() system calls, and you want to debug
the child processes, you need to link programs with the dbfork library.
Version 6.2 TotalView Reference Guide 231

8
Compilers and Platforms

Linking with the dbfork Library
Linking with dbfork and HP Tru64 UNIX

Add one of the following command-line options to the command that you use to
link your programs:

g /opt/totalview/alpha/lib/libdbfork.a

g –L/opt/totalview/alpha/lib –ldbfork

For example:

cc –o program program.c –L/opt/totalview/alpha/lib –ldbfork

As an alternative, you can set the LD_LIBRARY_PATH environment variable and
omit the –L option on the command line:

setenv LD_LIBRARY_PATH /opt/totalview/alpha/lib

Linking with HP-UX

Add either the –ldbfork or –ldbfork_64 argument to the command that you use to
link your programs. If you are compiling 32-bit code, use one of the following argu-
ments:

g /opt/totalview/lib/hpux11-hppa/libdbfork.a

g –L/opt/totalview/hpux11-hppa/lib –ldbfork

For example:

cc –n32 –o program program.c \
–L/opt/totalview/hpux11-hppa/lib –ldbfork

If you are compiling 64-bit code, use the following arguments:

g /opt/totalview/lib/hpux11-hppa/libdbfork_64.a

g –L/opt/totalview/hpux11-hppa/lib –ldbfork_64

For example:

cc –64 –o program program.c \
–L/opt/totalview/hpux11-hppa/lib –ldbfork_64

As an alternative, you can set the LD_LIBRARY_PATH environment variable and
omit the –L command-line option. For example:

setenv LD_LIBRARY_PATH /opt/totalview/hpux11-hppa/lib
232 TotalView Reference Guide Version 6.2

Compilers and Platforms

Linking with the dbfork Library
dbfork on IBM AIX on RS/6000 Systems

Add either the –dbfork or –ldbfork_64 argument to the command that you use to
link your programs. If you are compiling 32-bit code, use the following arguments:

g /usr/totalview/lib/libdbfork.a –bkeepfile:/usr/totalview/lib/rs6000/libdbfork.a
g –L/usr/totalview/lib –ldbfork –bkeepfile:/usr/totalview/lib/rs6000/libdbfork.a

For example:

cc –o program program.c \
–L/usr/totalview/rs6000/lib/ –ldbfork \
–bkeepfile:/usr/totalview/rs6000/lib/libdbfork.a

If you are compiling 64-bit code, use the following arguments:

g /usr/totalview/lib/libdbfork_64.a \
–bkeepfile:/usr/totalview/rs6000/lib/libdbfork.a

g –L/usr/totalview/lib –ldbfork_64 \
–bkeepfile:/usr/totalviewrs6000//lib/libdbfork.a

For example:

cc –o program program.c \
–L/usr/totalview/rs6000/lib –ldbfork \
–bkeepfile:/usr/totalview/rs6000/lib/libdbfork.a

When you use gcc or g++, use the –Wl,–bkeepfile option instead of using the
–bkeepfile option, which will pass the same option to the binder. For example:

gcc –o program program.c –L/usr/totalview/rs6000/lib \
–ldbfork –Wl, \
–bkeepfile:/usr/totalview/rs6000/lib/libdbfork.a

Linking C++ Programs with dbfork
You cannot use the –bkeepfile binder option with the IBM xlC C++ compiler. The
compiler passes all binder options to an additional pass called munch, which will
not handle the –bkeepfile option.

To work around this problem, we have provided the C++ header file libdbfork.h.
You must include this file somewhere in your C++ program. This forces the com-
ponents of the dbfork library to be kept in your executable. The file libdbfork.h is
included only with the RS/6000 version of TotalView. This means that if you are cre-
Version 6.2 TotalView Reference Guide 233

8
Compilers and Platforms

Linking with the dbfork Library
ating a program that will run on more than one platform, you should place the
include within an #ifdef statement’s range. For example:

#ifdef _AIX
#include “/usr/totalview/rs6000/lib/libdbfork.h”
#endif
int main (int argc, char *argv[])
{
}

In this case, you would not use the –bkeepfile option and would instead link your
program using one of the following options:

g /usr/totalview/rs6000/lib/libdbfork.a
g –L/usr/totalview/rs6000/lib –ldbfork

Linux

Add one of the following arguments or command-line options to the command that
you use to link your programs:

g /usr/totalview/platform/lib/libdfork.a

g -L/usr/totalview/platform/lib –lbdbfork

where platform is either linux-86 or linux-alpha.

For example:

cc –o program program.c –L/usr/totalview/linux-86/lib
–ldbfork

As an alternative, you can set the LD_LIBRARY_PATH environment variable and
omit the –L option on the command line:

setenv LD_LIBRARY_PATH /usr/totalview/platform/lib

where platform is again either linux-86 or linux-alpha.

SGI IRIX6-MIPS

Add one of the following arguments or command-line options to the command that
you use to link your programs.

If you are compiling your code with –n32, use the following arguments:
234 TotalView Reference Guide Version 6.2

Compilers and Platforms

Linking with the dbfork Library
g /opt/totalview/irix6-mips/lib/libdbfork_n32.a

g –L/opt/totalview/irix6-mips/lib –ldbfork_n32

For example:

cc –n32 –o program program.c \
–L/opt/totalview/irix6-mips/lib –ldbfork_n32

If you are compiling your code with –64, use the following arguments:

g /opt/totalview/irix6-mips/lib/libdbfork.a_n64.a

g –L/opt/totalview/irix6-mips/lib –ldbfork_n64

For example:

cc –64 –o program program.c \
–L/opt/totalview/irix6-mips/lib –ldbfork_n64

As an alternative, you can set the LD_LIBRARY_PATH environment variable and
omit the –L option on the command line:

setenv LD_LIBRARY_PATH /opt/totalview/irix6-mips/lib

SunOS 5 SPARC

Add one of the following command line arguments or options to the command that
you use to link your programs:

g /opt/totalview/sun5/lib/libdbfork.a

g –L/opt/totalview/sun5/lib –ldbfork

For example:

cc –o program program.c –L/opt/totalview/sun5/lib –ldbfork

As an alternative, you can set the LD_LIBRARY_PATH environment variable and
omit the –L option on the command line:

setenv LD_LIBRARY_PATH /opt/totalview/sun5/lib
Version 6.2 TotalView Reference Guide 235

8
Compilers and Platforms

Linking with the dbfork Library
236 TotalView Reference Guide Version 6.2

Version 6.2
Chapter 9
Operating Systems
This chapter describes the operating system features that can be used with TotalView.
This chapter includes the following topics:

g Supported Operating Systems
g Mounting the /proc File System (HP Tru64 UNIX, IRIX, and SunOS 5 only)
g Swap Space
g Shared Libraries
g Debugging Dynamically Loaded Libraries
g Remapping Keys (Sun Keyboards only)
g Expression System

Supported Operating Systems

Here is an overview of operating systems and some of the environments supported
by TotalView at the time when this book was printed. As this book isn’t printed
nearly as often as vendors update compilers and operating systems, the compiler
and operating system versions mentioned here may be obsolete. For a definitive
list, see the TOTALVIEW PLATFORMS document on our web site. You can locate this
document by going to http://www.etnus.com/Support/docs/”.

g HP Alpha workstations running HP Tru64 UNIX versions V4.0F, V5.1, and V5.1A.
Many versions require patches. See “HP UNIX Patch Procedures” in the
TOTALVIEW PLATFORMS document for instructions.

g HP PA-RISC 1.1 or 2.0 systems running HP-UX Version 11.00,11.10, and 11.11i.

g IBM RS/6000 and SP systems running AIX versions 4.3.3 and 5.1L.

g Linux Red Hat 7.1, 7.2, 7.3, and 8.0.
TotalView Reference Guide 237

9
Operating Systems

Mounting the /proc File System
g SGI IRIX 6.5.1.15f and 6.5.1.16f on any MIPS R4000, R4400, R4600, R5000,
R8000, R10000, and R12000 processor-based systems.

g Sun Sparc Solaris 7, 8 and 9.

Mounting the /proc File System

To debug programs on HP Tru64 UNIX, SunOS 5, and IRIX with TotalView, you need
to mount the /proc file system.

If you receive one of the following errors from TotalView, the /proc file system might
not be mounted:

g job_t::launch, creating process: process not found

g Error launching process while trying to read dynamic symbols

g Creating Process... Process not found
Clearing Thrown Flag
Operation Attempted on an unbound d_process object

To determine whether the /proc file system is mounted, enter the appropriate com-
mand from the following table.

If you receive one of these messages from the mount command, the /proc file sys-
tem is mounted.

TABLE 10: Commands for Determining Whether /proc Is Mounted

Operating System Command
HP Tru64 UNIX % /sbin/mount –t procfs

/proc on /proc type procfs (rw)

SunOS 5 % /sbin/mount | grep /proc
/proc on /proc read/write/setuid on ...

IRIX % /sbin/mount | grep /proc
/proc on /proc type proc (rw)
238 TotalView Reference Guide Version 6.2

Operating Systems

Swap Space
Mounting /proc HP Tru64 UNIX and SunOS 5

To make sure that the /proc file system is mounted each time your system boots,
add the appropriate line from the following table to the appropriate file.

Then, to mount the /proc file system, enter the following command:

/sbin/mount /proc

Mounting proc SGI IRIX

To make sure that the /proc file system is mounted each time your system boots,
make sure that /etc/rc2 issues the /etc/mntproc command. Then, to mount the
/proc file system, enter the following command:

/etc/mntproc

Swap Space

Debugging large programs can exhaust the swap space on your machine. If you run
out of swap space, TotalView exits with a fatal error, such as:

g Fatal Error: Out of space trying to allocate

This error indicates that TotalView failed to allocate dynamic memory. It can
occur anytime during a TotalView session. It can also indicate that the data size
limit in the C shell is too small. You can use the C shell’s limit command to
increase the data size limit. For example:
limit datasize unlimited

g job_t::launch, creating process: Operation failed

This error indicates that the fork() or execve() system call failed while TotalView
was creating a process to debug. It can happen when TotalView tries to create a
process.

TABLE 11: Commands for Automatically Mounting the /proc File System

Operating System Name of File Line to add
HP Tru64 UNIX /etc/fstab /proc /proc procfs rw 0 0
SunOS 5 /etc/vfstab /proc - /proc proc - no -
Version 6.2 TotalView Reference Guide 239

9
Operating Systems

Swap Space
Swap Space on HP Tru64 UNIX

To find out how much swap space has been allocated and is currently being used,
use the swapon command on HP Tru64 UNIX.

To find out how much swap space is in use while you are running TotalView:

/bin/ps –o LFMT

To add swap space, use the /sbin/swapon(8) command. You must be logged in as
root to use this command. For more information, refer to the online manual page
for this command.

Swap Space on HP HP-UX

The swapinfo command on an HP-UX system lets you find out how much swap
space is allocated and is being used.

To find out how much swap space is being used while TotalView is running, enter:

/usr/bin/ps -lf

Here is an example of what you might see. The SZ column shows the pages occu-
pied by a program.

To add swap space, use the/usr/sbin/swapon(1M) command or the SAM (System
Administration Manager) utility. If you use SAM, invoke the Swap command in the
Disks and File Systems menu.

Maximum Data Size
To see the current data size limit in the C shell, enter:

limit datasize

The following command displays the current hard limit:

limit –h datasize

If the current limit is lower than the hard limit, you can easily raise the current limit.
To change the current limit, enter:

limit datasize new_data_size
240 TotalView Reference Guide Version 6.2

Operating Systems

Swap Space
If the hard limit is too low, you must reconfigure and rebuild the kernel, and then
reboot. This is most easily done using SAM.

To change maxdsiz, use the following path through the SAM menus:

Kernel Configuration > Configurable Parameters >
maxdsiz > Actions > Modify Configurable Parameter >
Specify New Formula/Value > Formula/Value

You can now enter the new maximum data segment size.

You may also need to change the value for maxdsiz_64.

Here is the command that lets you rebuild the kernel with these changed values:

Configurable Parameter > Actions > Process New Kernel

Answer yes to process the kernel modifications, yes to install the new kernel, and
yes again to reboot the machine with the new kernel.

When the machine reboots, the value you set for maxdsiz should be the new hard
limit.

Swap Space on IBM AIX

To find out how much swap space has been allocated and is currently being used,
use the pstat -s command:

To find out how much swap space is in use while you are running TotalView:

1 Start TotalView with a large executable:

totalview executable

Press Ctrl+Z to suspend TotalView.

2 Use the following command to see how much swap space TotalView is using:
ps u

For example, in this case the value in the SZ column is 5476 KB:

USER PID %CPU %MEM SZ RSS TTY ...
smith 15080 0.0 6.0 5476 5476 pts/1 ...

To add swap space, use the AIX system management tool, smit. Use the following
path through the smit menus:

System Storage Management → Logical Volume Manager →
Paging Space
Version 6.2 TotalView Reference Guide 241

9
Operating Systems

Swap Space
Swap Space on Linux

To find out how much swap space has been allocated and is currently being used,
use either the swapon or top commands on Linux:

You can use the mkswap(8) command to create swap space. The swapon(8) com-
mand tells Linux that it should use this space.

Swap Space on SGI IRIX

To find out how much swap space has been allocated and is currently being used,
use the swap command:

To find out how much swap space is in use while you are running TotalView:

1 Start TotalView with a large executable:

totalview executable

Press Ctrl+Z to suspend TotalView.

2 Use the following command to see how much swap space TotalView is using:
/bin/ps –l

Use the following command to determine the number of bytes in a page:
sysconf PAGESIZE

To add swap space, use the mkfile(1M) and swap(1M) commands. You must be
root to use these commands. For more information, refer to the online manual
pages for these commands.

Swap Space on SunOS 5

To find out how much swap space has been allocated and is currently being used,
use the swap -s command:

To find out how much swap space is in use while you are running TotalView:

1 Start TotalView with a large executable:

totalview executable

Press Ctrl+Z to suspend TotalView.

2 Use the following command to see how much swap space TotalView is using:
/bin/ps –l
242 TotalView Reference Guide Version 6.2

Operating Systems

Shared Libraries
To add swap space, use the mkfile(1M) and swap(1M) commands. You must be
root to use these commands. For more information, refer to the online manual
pages for these commands.

Shared Libraries

TotalView supports dynamically linked executables, that is, executables that are
linked with shared libraries.

When you start TotalView with a dynamically linked executable, TotalView loads an
additional set of symbols for the shared libraries, as indicated in the shell from
which you started TotalView. To accomplish this, TotalView:

1 Runs a sample process and discards it.

2 Reads information from the process.

3 Reads the symbol table for each library.

When you create a process without starting it, and the process does not include
shared libraries, the PC points to the entry point of the process, usually the start
routine. If the process does include shared libraries, however, TotalView takes the
following actions:

g Runs the dynamic loader (SunOS 5: ld.so, HP Tru64 UNIX: /sbin/loader, Linux:
/lib/ld-linux.so.?, IRIX: rld).

g Sets the PC to point to the location after the invocation of the dynamic loader
but before the invocation of C++ static constructors or the main() routine.

NOTE On HP-UX, TotalView cannot stop the loading of shared libraries until after
static constructors on shared library initialization routines have been run.

When you attach to a process that uses shared libraries, TotalView takes the follow-
ing actions:

g If you attached to the process after the dynamic loader ran, then TotalView loads
the dynamic symbols for the shared library.

g If you attached to the process before it runs the dynamic loader, TotalView allows
the process to run the dynamic loader to completion. Then, TotalView loads the
dynamic symbols for the shared library.
Version 6.2 TotalView Reference Guide 243

9
Operating Systems

Shared Libraries
If desired, you can suppress the recording and use of dynamic symbols for shared
libraries by starting TotalView with the –no_dynamic option. Refer to Chapter 6,
“TotalView Command Syntax” on page 207 for details on this TotalView startup option.

If a shared library has changed since you started a TotalView session, you can use
the Group > Rescan Library command to reload library symbol tables. Be aware
that only some systems such as AIX permit you to reload library information.

Changing Linkage Table Entries and LD_BIND_NOW

If you are executing a dynamically linked program, calls from the executable into a
shared library are made using the Procedure Linkage Table (PLT). Each function in the
dynamic library that is called by the main program has an entry in this table. Nor-
mally, the dynamic linker fills the PLT entries with code that calls the dynamic linker.
This means that the first time that your code calls a function in a dynamic library,
the runtime environment calls the dynamic linker. The linker will then modify the
entry so that next time this function is called, it will not be involved.

This is not the behavior you want or expect when debugging a program because
TotalView will do one of the following:

g Place you within the dynamic linker (which you don't want to see).

g Step over the function.

And, because the entry is altered, everything appears to work fine the next time you
step into this function.

On most operating systems (except HP), you can correct this problem by setting
the LD_BIND_NOW environment variable. For example:

setenv LD_BIND_NOW 1

This tells the dynamic linker that it should alter the PLT when the program starts
executing rather than doing it when the program calls the function.

HP-UX does not have this (or an equivalent) variable. On HP systems, you can avoid
this problem by using the –B immediate option the executable being debugged, or
by invoking chatr with the –B immediate option. (See the chatr documentation for
complete information on how to use this command.)

You will also have to enter pxdb –s on.
244 TotalView Reference Guide Version 6.2

Operating Systems

Debugging Dynamically Loaded Libraries
Using Shared Libraries on HP-UX

The dynamic library loader on HP-UX loads shared libraries into shared memory.
Writing breakpoints into code sections loaded in shared memory can cause pro-
grams not under TotalView’s control to fail when they execute an unexpected
breakpoint.

If you need to single-step or set breakpoints in shared libraries, you must set your
application to load those libraries in private memory. This is done using HP’s pxdb
command.

pxdb -s on appname (load shared libraries into private
memory)

pxdb -s off appname (load shared libraries into shared
memory)

For 64-bit platforms, use pxdb64 instead of pxdb. If the version of pxdb64 sup-
plied with HP's compilers does not work correctly, you may need to install an HP-
supplied patch. You will find additional information in the TOTALVIEW RELEASE
NOTES.

Debugging Dynamically Loaded Libraries

TotalView automatically reads the symbols of shared libraries that are dynamically
loaded into your program at runtime. These libraries are ones that are loaded using
dlopen (or, on IBM AIX, load and loadbind).

TotalView automatically detects these calls, and then loads the symbol table from
the newly loaded libraries and plants any enabled saved breakpoints for these
libraries. TotalView then decides whether to ask you about stopping the process to
plant breakpoints. You will set these characteristics by using the Dynamic Libraries
Page in the File > Preferences Dialog Box. (See “File > Preferences Dialog Box: Dynamic
Libraries Page” on page 246.)

TotalView decides according to the following rules:

1 If either the Load symbols from dynamic libraries or Ask to stop when loading
dynamic libraries preference is set to false, TotalView does not ask you about
stopping.
Version 6.2 TotalView Reference Guide 245

9
Operating Systems

Debugging Dynamically Loaded Libraries
2 If one or more of the strings in the When the file suffix matches preference
list is a suffix of the full library name (including path), TotalView asks you
about stopping.

3 If one or more of the strings in the When the file path prefix does not match
list is a prefix of the full library name (including path), TotalView does not ask
you about stopping.

4 If the newly loaded libraries have any saved breakpoints, TotalView does not
ask you about stopping.

5 If none of the rules above apply, TotalView asks you about stopping.

If TotalView does not ask you about stopping the process, the process is continued.

If TotalView decides to ask you about stopping, it displays a dialog box, asking if it
should stop the process so you can set breakpoints. To stop the process, answer
Yes. (See Figure 2.)

To allow the process to continue executing, answer No. Stopping the process
allows you to insert breakpoints in the newly loaded shared library.

FIGURE 1: File > Preferences Dialog Box: Dynamic Libraries Page
246 TotalView Reference Guide Version 6.2

Operating Systems

Debugging Dynamically Loaded Libraries
Do either or both of the following to tell TotalView if it should ask:

g If you can set the –ask_on_dlopen command-line option to true, or you can set
the –no_ask_on_dlopen option to false.

g Unset the Load symbols from dynamic libraries preference.

The following table lists paths where you are not asked if TotalView should stop the
process:

The values you enter in the TotalView preference should be space-separated lists of
the prefixes and suffixes to be used.

FIGURE 2: Stop Process Question Dialog Box

TABLE 12: Default “Don’t Ask” on Load List

Platform Value
HP Tru64 UNIX Alpha /usr/shlib/ /usr/ccs/lib/

/usr/lib/cmplrs/cc/ /usr/lib/
/usr/local/lib/ /var/shlib/

HP-UX /usr/lib/ /usr/lib/pa20_64
/opt/langtools/lib/ /opt/langtools/lib/pa20_64/

IBM AIX /lib/ /usr/lib/
/usr/lpp/ /usr/ccs/lib/
/usr/dt/lib/ /tmp/

SGI IRIX /lib/ /usr/lib/
/usr/local/lib/ /lib32/
/usr/lib32/ /usr/local/lib32/
/lib64/ /usr/lib64/
/usr/local/lib64

SUN Solaris 2.x /lib/ /usr/lib/
/usr/ccs/lib/

Linux x86 /lib /usr/lib
Linux Alpha /lib /usr/lib
Version 6.2 TotalView Reference Guide 247

9
Operating Systems

Remapping Keys
After starting TotalView, you can change these lists by using the When the file suffix
matches and And the file path prefix does not match preferences.

Known Limitations

Dynamic library support has the following known limitations:

g TotalView does not deal correctly with parallel programs that call dlopen on dif-
ferent libraries in different processes. TotalView requires that the processes have
a uniform address space, including all shared libraries.

g TotalView does not yet fully support unloading libraries (using dlclose) and then
reloading them at a different address using dlopen.

Remapping Keys

On the SunOS 5 keyboard, you may need to remap the page-up and page-down
keys to the prior and next keysym so that you can scroll TotalView windows with the
page-up and page-down keys. To do so, add the following lines to your X Window
System startup file:

Remap F29/F35 to PgUp/PgDn
xmodmap -e 'keysym F29 = Prior'
xmodmap -e 'keysym F35 = Next'

Expression System

Depending on the target platform, TotalView supports:

g An interpreted expression system only

g Both an interpreted and a compiled expression system

Unless stated otherwise below, TotalView supports interpreted expressions only.

Expression System on HP Alpha Tru64 UNIX

On HP Tru64 UNIX, TotalView supports compiled and interpreted expressions.
TotalView also supports assembly language in expressions.
248 TotalView Reference Guide Version 6.2

Operating Systems

Expression System
Expression System on IBM AIX

On IBM AIX, TotalView supports compiled and interpreted expressions. TotalView
also supports assembly language in expressions.

Some program functions called from the TotalView expression system on the Power
architecture cannot have floating-point arguments that are passed by value. How-
ever, in functions with a variable number of arguments, floating-point arguments
can be in the varying part of the argument list. For example, you can include float-
ing-point arguments with calls to printf:

double d = 3.14159;
printf("d = %f\n", d);

Expression System on SGI IRIX

On IRIX, TotalView supports compiled and interpreted expressions. TotalView also
supports assembler in expressions.

TotalView includes the SGI IRIX expression compiler. This feature does not use any
MIPS-IV specific instructions. It does use MIPS-III instructions freely. It fully sup-
ports –n32 and –64 executables.

Due to limitations in dynamically allocating patch space, compiled expressions are
disabled by default on SGI IRIX. To enable compiled expressions, use the
TV::compile_expressions CLI variable to set the option to true. This variable tells
TotalView to find or allocate patch space in your program for code fragments gener-
ated by the expression compiler.

If you enable compiled patches on SGI IRIX with a multiprocess program, you must
use static patches. For example, if you link a static patch space into a program and
run the program under TotalView’s control, TotalView should let you debug it. If you
attach to a previously started MPI job, however, even static patches will not let the
program run properly. If TotalView still fails to work properly with the static patch
space, then you probably cannot use compiled patches with your program.

For general instructions on using patch space allocation controls with compiled
expressions, see “Allocating Patch Space for Compiled Expressions” in Chapter 14 of the
TOTALVIEW USERS GUIDE.
Version 6.2 TotalView Reference Guide 249

9
Operating Systems

Expression System
250 TotalView Reference Guide Version 6.2

Version 6.2
Chapter 10
Architectures
This chapter describes the architectures TotalView supports, including:

g HP Alpha
g HP PA-RISC
g IBM Power
g Intel-x86 (Intel 80386, 80486 and Pentium processors)
g SGI MIPS
g Sun SPARC

HP Alpha

This section contains the following information:

g Alpha General Registers

g Alpha Floating-Point Registers

g Alpha FPCR Register

NOTE The Alpha processor supports the IEEE floating-point format.
TotalView Reference Guide 251

10
Architectures

HP Alpha
Alpha General Registers

TotalView displays the Alpha general registers in the Stack Frame Pane of the Pro-
cess Window. The next table describes how TotalView treats each general register,
and the actions you can take with each register.

TABLE 13: Alpha General-Purpose Integer Registers

Register Description Data Type Edit Dive
Specify in
Expression

V0 Function value register <long> yes yes $v0
T0 – T7 Conventional scratch

registers
<long> yes yes $t0 – $t7

S0 – S5 Conventional saved
registers

<long> yes yes $s0 – $s5

S6 Stack frame base register <long> yes yes $s6
A0 – A5 Argument registers <long> yes yes $a0 – $a5
T8 – T11 Conventional scratch

registers
<long> yes yes $t8 – $t11

RA Return Address register <long> yes yes $ra
T12 Procedure value register <long> yes yes $t12
AT Volatile scratch register <long> yes yes $at
GP Global pointer register <long> yes yes $gp
SP Stack pointer <long> yes yes $sp
ZERO ReadAsZero/Sink register <long> no yes $zero
PC Program counter <code>[] no yes $pc
FP Frame pointer. The Frame

Pointer is a software
register that TotalView
maintains; it is not an
actual hardware register.
TotalView computes the
value of FP as part of the
stack backtrace.

<long> no yes $fp
252 TotalView Reference Guide Version 6.2

Architectures

HP Alpha
Alpha Floating-Point Registers

TotalView displays the Alpha floating-point registers in the Stack Frame Pane of the
Process Window. Here is a table that describes how TotalView treats each floating-
point register, and the actions you can take with each register.

Alpha FPCR Register

For your convenience, TotalView interprets the bit settings of the Alpha FPCR regis-
ter. You can edit the value of the FPCR and set it to any of the bit settings outlined
in the following table.

TABLE 14: Alpha Floating-Point Registers

Register Description Data Type Edit Dive
Specify in
Expression

F0 – F1 Floating-point registers (f
registers), used singly

<double> yes yes $f0 – $f1

F2 – F9 Conventional saved
registers

<double> yes yes $f2 – $f9

F10 – F15 Conventional scratch
registers

<double> yes yes $f10 – $f15

F16 – F21 Argument registers <double> yes yes $f16 – $f21
F22 – F30 Conventional scratch

registers
<double> yes yes $f22 – $f30

F31 ReadAsZero/Sink register <double> yes yes $f31
FPCR Floating-point control

register
<long> yes no $fpcr

TABLE 15: Alpha FPCR Register Bit Settings

Value Bit Setting Meaning

SUM 0x8000000000000000 Summary bit

DYN=CHOP 0x0000000000000000 Rounding mode — Chopped
rounding mode

DYN=MINF 0x0400000000000000 Rounding mode — Negative infinity

DYN=NORM 0x0800000000000000 Rounding mode — Normal rounding
Version 6.2 TotalView Reference Guide 253

10
Architectures

HP PA-RISC
HP PA-RISC

This section contains the following information:

g PA-RISC General Registers

g PA-RISC Process Status Word

g PA-RISC Floating-Point Registers

g PA-RISC Floating-Point Format

PA-RISC General Registers

TotalView displays the PA-RISC general registers in the Stack Frame Pane of the Pro-
cess Window. The following table describes how TotalView treats each general regis-
ter and the actions you take with them.

DYN=PINF 0x0c00000000000000 Rounding mode — Positive infinity

IOV 0x0200000000000000 Integer overflow

INE 0x0100000000000000 Inexact result

UNF 0x0080000000000000 Underflow

OVF 0x0040000000000000 Overflow

DZE 0x0020000000000000 Division by zero

INV 0x0010000000000000 Invalid operation

TABLE 15: Alpha FPCR Register Bit Settings (cont.)

Value Bit Setting Meaning

TABLE 16: PA-RISC General Registers

Register Description Data Type Edit Dive
Specify in
Expression

r0 Always contains zero <long> no no $r0
r1-r31 General registers <long> yes yes $r1-$r31
pc Current instruction pointer <long> yes yes $pc
nxtpc Next instruction pointer <long> yes yes $nxtpc
pcs Current instruction space <long> no no $pcs
254 TotalView Reference Guide Version 6.2

Architectures

HP PA-RISC
PA-RISC Process Status Word

For your convenience, TotalView interprets the bit settings of the PA-RISC Processor
Status Word. You can edit the value of this word and set some of the bits listed in
the following table.

nxtpcs Next instruction space <long> no no $nxtpcs
psw Processor status word <long> yes no $psw
sar Shift amount register <long> yes no $sar
sr0-sr7 Space registers <long> no no $sr0-$sr7
recov Recovery counter <long> no no $recov
pid1-pid8 Protection IDs <long> no no $pid1-

$pid8
ccr Coprocessor configuration <long> no no $ccr
scr SFU configuration register <long> no no $scr
eiem External interrupt enable

mask
<long> no no $eiem

iir Interrupt instruction <long> no no $iir
isr Interrupt space <long> no no $isr
ior Interrupt offset <long> no no $ior
cr24-cr26 Temporary registers <long> no no $cr24-

$cr26
tp Thread pointer <long> yes yes $tp

TABLE 17: PA-RISC Processor Status Word

Value Bit Setting Meaning
W 0x0000000008000000 64-bit addressing enable
E 0x0000000004000000 Little-endian enable
S 0x0000000002000000 Secure interval timer
T 0x0000000001000000 Taken branch flag
H 0x0000000000800000 Higher-privilege transfer trap enable
L 0x0000000000400000 Lower-privilege transfer trap enable
N 0x0000000000200000 Nullify current instruction
X 0x0000000000100000 Data memory break disable

TABLE 16: PA-RISC General Registers

Register Description Data Type Edit Dive
Specify in
Expression
Version 6.2 TotalView Reference Guide 255

10
Architectures

HP PA-RISC
PA-RISC Floating-Point Registers

The PA-RISC has 32 floating-point registers. The first four are used for status and
exception registers. The rest can be addressed as 64-bit doubles, as two 32-bit
floats in the right and left sides of the register, or even-odd pairs of registers as 128-
bit extended floats.

B 0x0000000000080000 Taken branch flag
C 0x0000000000040000 Code address translation enable
V 0x0000000000020000 Divide step correction
M 0x0000000000010000 High-priority machine check mask
O 0x0000000000000080 Ordered references
F 0x0000000000000020 Performance monitor interrupt unmask
R 0x0000000000000010 Recovery counter enable
Q 0x0000000000000008 Interrupt state collection enable
P 0x0000000000000004 Protection identifier validation enable
D 0x0000000000000002 Data address translation enable
I 0x0000000000000001 External interrupt unmask
C/B 0x000000FF0000FF00 Carry/borrow bits

TABLE 18: PA-RISC Floating-Point Registers

Register Description Data Type Edit Dive
Specify in
Expression

status Status register <int> no no $status
er1-er7 Exception registers <int> no no $er1-$er7
fr4-fr31 Double floating-point

registers
<double> yes yes $fr4-$fr31

fr4l-fr31l Left half floating-point
registers

<float> yes yes $fr4l-$fr31l

fr4r-fr31r Right half floating-point
registers

<float> yes yes $fr4r-$fr31r

fr4/fr5-
fr30/fr31

Extended floating-point
register pairs

<extended> yes yes $fr4_fr5-
$fr30_fr31

TABLE 17: PA-RISC Processor Status Word (cont.)

Value Bit Setting Meaning
256 TotalView Reference Guide Version 6.2

Architectures

HP PA-RISC
The floating-point status word controls the arithmetic rounding mode, enables
user-level traps, enables floating-point exceptions, and indicates the results of
comparisons.

TABLE 19: Floating-Point Status Word Use

Type Value Meaning
Rounding Mode 0 Round to nearest

1 Round toward zero
2 Round toward +infinity
3 Round toward –infinity

Exception Enable and
Exception Flag Bits

V Invalid operation
Z Division by zero
O Overflow
U Underflow
I Inexact result

Comparison Fields C Compare bit; contains the result of the most
recent queued compare instruction.

CQ Compare queue; contains the result of the
second-most recent queued compare through
the twelfth-most recent queued compare.
Each queued compare instruction shifts the
CQ field right one bit and copies the C bit into
the left-most position.
This field occupies the same bits as the CA
field and is undefined after a targeted
compare.

CA Compare array; an array of seven compare
bits, each of which contains the result of the
most recent compare instruction targeting
that bit.
This field occupies the same bits as the CQ
field and is undefined after a queued compare.

Other Flags T Delayed trap
D Denormalized as zero
Version 6.2 TotalView Reference Guide 257

10
Architectures

IBM Power
PA-RISC Floating-Point Format

The PA-RISC processor supports the IEEE floating-point format.

IBM Power

This section contains the following information:

g Power General Registers

g Power MSR Register

g Power Floating-Point Registers

g Power FPSCR Register

g Using the Power FPSCR Register

NOTE The Power architecture supports the IEEE floating-point format.

Power General Registers

TotalView displays Power general registers in the Stack Frame Pane of the Process
Window. The following table describes how TotalView treats each general register,
and the actions you can take with each register.

TABLE 20: Power General-Purpose Integer Registers

Register Description Data Type Edit Dive
Specify in
Expression

R0 General register 0 <int> yes yes $r0
SP Stack pointer <int> yes yes $sp
RTOC TOC pointer <int> yes yes $rtoc
R3 – R31 General registers 3 – 31 <int> yes yes $r3 – $r31
INUM <int> yes no $inum
PC Program counter <code>[] no yes $pc
SRR1 Machine status

save/restore register
<int> yes no $srr1

LR Link register <int> yes no $lr
CTR Counter register <int> yes no $ctr
CR Condition register <int> yes no $cr
XER Integer exception register <int> yes no $xer
DAR Data address register <int> yes no $dar
258 TotalView Reference Guide Version 6.2

Architectures

IBM Power
Power MSR Register

For your convenience, TotalView interprets the bit settings of the Power MSR regis-
ter. You can edit the value of the MSR and set it to any of the bit settings outlined in
the following table.

MQ MQ register <int> yes no $mq
MSR Machine state register <int> yes no $msr
SEG0 – SEG9 Segment registers 0 – 9 <int> yes no $seg0 –

$seg9
SG10 – SG15 Segment registers 10 –15 <int> yes no $sg10 –

$sg15
SCNT SS_COUNT <int> yes no $scnt
SAD1 SS_ADDR 1 <int> yes no $sad1
SAD2 SS_ADDR 2 <int> yes no $sad2
SCD1 SS_CODE 1 <int> yes no $scd1
SCD2 SS_CODE 2 <int> yes no $scd2
TID <int> yes no

TABLE 21: Power MSR Register Bit Settings

Value Bit Setting Meaning
0x80000000000000000 SF Sixty-four bit mode
0x0000000000040000 POW Power management enable
0x0000000000020000 TGPR Temporary GPR mapping
0x0000000000010000 ILE Exception little-endian mode
0x0000000000008000 EE External interrupt enable
0x0000000000004000 PR Privilege level
0x0000000000002000 FP Floating-point available
0x0000000000001000 ME Machine check enable
0x0000000000000800 FE0 Floating-point exception mode 0
0x0000000000000400 SE Single-step trace enable
0x0000000000000200 BE Branch trace enable
0x0000000000000100 FE1 Floating-point exception mode 1
0x0000000000000040 IP Exception prefix

TABLE 20: Power General-Purpose Integer Registers (cont.)

Register Description Data Type Edit Dive
Specify in
Expression
Version 6.2 TotalView Reference Guide 259

10
Architectures

IBM Power
Power Floating-Point Registers

TotalView displays the Power floating-point registers in the Stack Frame Pane of the
Process Window. The next table describes how TotalView treats each floating-point
register, and the actions you can take with each register.

Power FPSCR Register

For your convenience, TotalView interprets the bit settings of the Power FPSCR reg-
ister. You can edit the value of the FPSCR and set it to any of the bit settings out-
lined in the following table.

0x0000000000000020 IR Instruction address translation
0x0000000000000010 DR Data address translation
0x0000000000000002 RI Recoverable exception
0x0000000000000001 LE Little-endian mode enable

TABLE 22: Power Floating-Point Registers

Register Description Data Type Edit Dive
Specify in
Expression

F0 – F31 Floating-point registers 0
– 31

<double> yes yes $f0 – $f31

FPSCR Floating-point status
register

<int> yes no $fpscr

FPSCR2 Floating-point status
register 2

<int> yes no $fpscr2

TABLE 23: Power PFSCR Register Bit Settings

Value Bit Setting Meaning
0x80000000 FX Floating-point exception summary
0x40000000 FEX Floating-point enabled exception summary
0x20000000 VX Floating-point invalid operation exception

summary
0x10000000 OX Floating-point overflow exception
0x08000000 UX Floating-point underflow exception

TABLE 21: Power MSR Register Bit Settings (cont.)

Value Bit Setting Meaning
260 TotalView Reference Guide Version 6.2

Architectures

IBM Power
0x04000000 ZX Floating-point zero divide exception
0x02000000 XX Floating-point inexact exception
0x01000000 VXSNAN Floating-point invalid operation exception for

SNaN
0x00800000 VXISI Floating-point invalid operation exception: ∞

− ∞
0x00400000 VXIDI Floating-point invalid operation exception: ∞ /

∞
0x00200000 VXZDZ Floating-point invalid operation exception: 0 / 0
0x00100000 VXIMZ Floating-point invalid operation exception: ∞ *

∞
0x00080000 VXVC Floating-point invalid operation exception:

invalid compare
0x00040000 FR Floating-point fraction rounded
0x00020000 FI Floating-point fraction inexact
0x00010000 FPRF=(C) Floating-point result class descriptor
0x00008000 FPRF=(L) Floating-point less than or negative
0x00004000 FPRF=(G) Floating-point greater than or positive
0x00002000 FPRF=(E) Floating-point equal or zero
0x00001000 FPRF=(U) Floating-point unordered or NaN
0x00011000 FPRF=(QNAN) Quiet NaN; alias for FPRF=(C+U)
0x00009000 FPRF=(-INF) -Infinity; alias for FPRF=(L+U)
0x00008000 FPRF=(-NORM) -Normalized number; alias for FPRF=(L)
0x00018000 FPRF=(-DENORM) -Denormalized number; alias for FPRF=(C+L)
0x00012000 FPRF=(-ZERO) -Zero; alias for FPRF=(C+E)
0x00002000 FPRF=(+ZERO) +Zero; alias for FPRF=(E)
0x00014000 FPRF=(+DENORM) +Denormalized number; alias for FPRF=(C+G)
0x00004000 FPRF=(+NORM) +Normalized number; alias for FPRF=(G)
0x00005000 FPRF=(+INF) +Infinity; alias for FPRF=(G+U)
0x00000400 VXSOFT Floating-point invalid operation exception:

software request
0x00000200 VXSQRT Floating-point invalid operation exception:

square root
0x00000100 VXCVI Floating-point invalid operation exception:

invalid integer convert

TABLE 23: Power PFSCR Register Bit Settings (cont.)

Value Bit Setting Meaning
Version 6.2 TotalView Reference Guide 261

10
Architectures

Intel-x86
Using the Power FPSCR Register
On AIX, if you compile your program to catch floating-point exceptions (IBM com-
piler –qflttrap option), you can change the value of the FPSCR within TotalView to
customize the exception handling for your program.

For example, if your program inadvertently divides by zero, you can edit the bit set-
ting of the FPSCR register in the Stack Frame Pane. In this case, you would change
the bit setting for the FPSCR to include 0x10 (as shown in Table 23) so that
TotalView traps the “divide by zero” exception. The string displayed next to the
FPSR register should now include ZE. Now, when your program divides by zero, it
receives a SIGTRAP signal, which will be caught by TotalView. See “Handling Signals”
in Chapter 3 of the TOTALVIEW USERS GUIDE for more information. If you did not set
the bit for trapping divide by zero or you did not compile to catch floating-point
exceptions, your program would not stop and the processor would set the ZX bit.

Intel-x86

This section contains the following information:

g Intel-x86 General Registers

g Intel-x86 Floating-Point Registers

g Intel-x86 FPCR Register

0x00000080 VE Floating-point invalid operation exception
enable

0x00000040 OE Floating-point overflow exception enable
0x00000020 UE Floating-point underflow exception enable
0x00000010 ZE Floating-point zero divide exception enable
0x00000008 XE Floating-point inexact exception enable
0x00000004 NI Floating-point non-IEEE mode enable
0x00000000 RN=NEAR Round to nearest
0x00000001 RN=ZERO Round toward zero
0x00000002 RN=PINF Round toward +infinity
0x00000003 RN=NINF Round toward –infinity

TABLE 23: Power PFSCR Register Bit Settings (cont.)

Value Bit Setting Meaning
262 TotalView Reference Guide Version 6.2

Architectures

Intel-x86
g Using the Intel-x86 FPCR Register

g Intel-x86 FPSR Register

NOTE The Intel-x86 processor supports the IEEE floating-point format.

Intel-x86 General Registers

TotalView displays the Intel-x86 general registers in the Stack Frame Pane of the
Process Window. The following table describes how TotalView treats each general
register, and the actions you can take with each register.

TABLE 24: Intel-x86 General Registers

Register Description Data Type Edit Dive
Specify in
Expression

EAX General registers <void> yes yes $eax
ECX <void> yes yes $ecx
EDX <void> yes yes $edx
EBX <void> yes yes $ebx
EBP <void> yes yes $ebp
ESP <void> yes yes $esp
ESI <void> yes yes $esi
EDI <void> yes yes $edi
CS Selector registers <void> no no $cs
SS <void> no no $ss
DS <void> no no $ds
ES <void> no no $es
FS <void> no no $fs
GS <void> no no $gs
EFLAGS <void> no no $eflags
EIP Instruction pointer <code>[] no yes $eip
FAULT <void> no no $fault
TEMP <void> no no $temp
INUM <void> no no $inum
ECODE <void> no no $ecode
Version 6.2 TotalView Reference Guide 263

10
Architectures

Intel-x86
NOTE The Pentium III and 4 have 8 128-bit registers that are used by SSE and SSE2 instruc-
tions. TotalView displays these as 16 64-bit registers. These registers can be used in the fol-
lowing ways: 16 bytes, 8 words, 2 long longs, 4 floating point, 2 double, or a single 128-bit
value. TotalView shows each of these hardware registers as two <long long> registers. To
change the type, dive and then edit the type in the data window to be an array of the type
you wish. For example, cast it to “<char>[16]”, “<float>[4], and so on.

Intel-x86 Floating-Point Registers

TotalView displays the x86 floating-point registers in the Stack Frame Pane of the
Process Window. The next table describes how TotalView treats each floating-point
register, and the actions you can take with each register.

XMM0_L
...
XMM7_L

Streaming SIMD
Extension: left half

<long long> yes yes $xmm0_l
...

$xmm7_l
XMM0_H
...
XMM7_H

Streaming SIMD
Extension: right half

<long long> yes yes $xmm0_h
...

$xmm7_h

TABLE 25: Intel-x86 Floating-Point Registers

Register Description Data Type Edit Dive
Specify in
Expression

ST0 ST(0) <extended> yes yes $st0
ST1 ST(1) <extended> yes yes $st1
ST2 ST(2) <extended> yes yes $st2
ST3 ST(3) <extended> yes yes $st3
ST4 ST(4) <extended> yes yes $st4
ST5 ST(5) <extended> yes yes $st5
ST6 ST(6) <extended> yes yes $st6
ST7 ST(7) <extended> yes yes $st7
FPCR Floating-point control

register
<void> yes no $fpcr

FPSR Floating-point status register <void> no no $fpsr
FPTAG Tag word <void> no no $fptag
FPIOFF Instruction offset <void> no no $fpioff

TABLE 24: Intel-x86 General Registers (cont.)

Register Description Data Type Edit Dive
Specify in
Expression
264 TotalView Reference Guide Version 6.2

Architectures

Intel-x86
Intel-x86 FPCR Register

For your convenience, TotalView interprets the bit settings of the FPCR and FPSR
registers.

You can edit the value of the FPCR and set it to any of the bit settings outlined in
the next table.

Using the Intel-x86 FPCR Register
You can change the value of the FPCR within TotalView to customize the exception
handling for your program.

For example, if your program inadvertently divides by zero, you can edit the bit set-
ting of the FPCR register in the Stack Frame Pane. In this case, you would change

FPISEL Instruction selector <void> no no $fpisel
FPDOFF Data offset <void> no no $fpdoff
FPDSEL Data selector <void> no no $fpdsel

TABLE 26: Intel-x86 FPCR Register Bit Settings

Value Bit Setting Meaning
RC=RN 0x0000 To nearest rounding mode

RC=R- 0x2000 Toward negative infinity rounding mode

RC=R+ 0x4000 Toward positive infinity rounding mode

RC=RZ 0x6000 Toward zero rounding mode
PC=SGL 0x0000 Single-precision rounding
PC=DBL 0x0080 Double-precision rounding
PC=EXT 0x00c0 Extended-precision rounding
EM=PM 0x0020 Precision exception enable
EM=UM 0x0010 Underflow exception enable
EM=OM 0x0008 Overflow exception enable
EM=ZM 0x0004 Zero-divide exception enable
EM=DM 0x0002 Denormalized operand exception enable
EM=IM 0x0001 Invalid operation exception enable

TABLE 25: Intel-x86 Floating-Point Registers

Register Description Data Type Edit Dive
Specify in
Expression
Version 6.2 TotalView Reference Guide 265

10
Architectures

Intel-x86
the bit setting for the FPCR to include 0x0004 (as shown in Table 26) so that
TotalView traps the “divide-by-zero” bit. The string displayed next to the FPCR reg-
ister should now include EM=(ZM). Now, when your program divides by zero, it
receives a SIGFPE signal, which you can catch with TotalView. See “Handling Signals”
in Chapter 3 of the TOTALVIEW USERS GUIDE for information on handling signals. If
you did not set the bit for trapping divide by zero, the processor would ignore the
error and set the EF=(ZE) bit in the FPSR.

Intel-x86 FPSR Register

The bit settings of the Intel-x86 FPSR register are outlined in the following table.

Intel-x86 MXSCR Register

This register contains control and status information for the SSE registers. Some of
the bits in this register are editable. You cannot dive in these values.

TABLE 27: Intel-x86 FPSR Register Bit Settings

Value Bit Setting Meaning
TOP=<i> 0x3800 Register <i> is top of FPU stack
B 0x8000 FPU busy
C0 0x0100 Condition bit 0
C1 0x0200 Condition bit 1
C2 0x0400 Condition bit 2
C3 0x4000 Condition bit 3
ES 0x0080 Exception summary status
SF 0x0040 Stack fault
EF=PE 0x0020 Precision exception
EF=UE 0x0010 Underflow exception
EF=OE 0x0008 Overflow exception
EF=ZE 0x0004 Zero divide exception
EF=DE 0x0002 Denormalized operand exception
EF=IE 0x0001 Invalid operation exception
266 TotalView Reference Guide Version 6.2

Architectures

SGI MIPS
The bit settings of the Intel-x86 MXCSR register are outlined in the following table.

SGI MIPS

This section contains the following information:

g MIPS General Registers

g MIPS SR Register

g MIPS Floating-Point Registers

g MIPS FCSR Register

g Using the MIPS FCSR Register

g MIPS Delay Slot Instructions

NOTE The MIPS processor supports the IEEE floating-point format.

Table 28: Intel-x86 MXCSR Register Bit Settings

Value Bit Setting Meaning
FZ 0x8000 Flush to zero

RC=RN 0x0000 To nearest rounding mode

RC=R- 0x2000 Toward negative infinity rounding mode

RC=R+ 0x4000 Toward positive infinity rounding mode

RC=RZ 0x6000 Toward zero rounding mode

EM=PM 0x1000 Precision mask

EM=UM 0x0800 Underflow mask

EM=OM 0x0400 Overflow mask

EM=ZM 0x0200 Divide-by-zero mask

EM=DM 0x0100 Denormal mask

EM=IM 0x0080 Invalid operation mask

DAZ 0x0040 Denormals are zeros

EF=PE 0x0020 Precision flag

EF=UE 0x0010 Underflow flag

EF=OE 0x0008 Overflow flag

EF=ZE 0x0004 Divide-by-zero flag

EF=DE 0x0002 Denormal flag

EF=IE 0x0001 Invalid operation flag
Version 6.2 TotalView Reference Guide 267

10
Architectures

SGI MIPS
MIPS General Registers

TotalView displays the MIPS general-purpose registers in the Stack Frame Pane of
the Process Window. The following table describes how TotalView treats each gen-
eral register, and the actions you can take with each register.

Programs compiled with either –64 or –n32 have 64-bit registers. TotalView uses
<long> for –64 compiled programs and <long long> for –n32 compiled
programs.

TABLE 29: MIPS General (Integer) Registers

Register Description Data Type Edit Dive
Specify in
Expression

ZERO Always has the value 0 <long> no no $zero
AT Reserved for the assembler <long> yes yes $at
V0 – V1 Function value registers <long> yes yes $v0 – $v1
A0 – A7 Argument registers <long> yes yes $a0 – $a7
T0 – T3 Temporary registers <long> yes yes $t0 – $t3
S0 – S7 Saved registers <long> yes yes $s0 – $s7
T8 – T9 Temporary registers <long> yes yes $t8 – $t9
K0 – K1 Reserved for the operating

system
<long> yes yes $k1 – $k2

GP Global pointer <long> yes yes $gp
SP Stack pointer <long> yes yes $sp
S8 Hardware frame pointer <long> yes yes $s8
RA Return address register <code>[] no yes $ra
MDLO Multiply/Divide special register,

holds least-significant bits of
multiply, quotient of divide

<long> yes yes $mdlo

MDHI Multiply/Divide special register,
holds most-significant bits of
multiply, remainder of divide

<long> yes yes $mdhi

CAUSE Cause register <long> yes yes $cause
EPC Program counter <code>[] no yes $epc
268 TotalView Reference Guide Version 6.2

Architectures

SGI MIPS
MIPS SR Register

For your convenience, TotalView interprets the bit settings of the SR register as out-
lined in the next table.

SR Status register <long> no no $sr
VFP Virtual frame pointer

The virtual frame pointer is a
software register that TotalView
maintains. It is not an actual
hardware register. TotalView
computes the VFP as part of
stack backtrace.

<long> no no $vfp

TABLE 30: MIPS SR Register Bit Settings

Value Bit Setting Meaning
0x00000001 IE Interrupt enable
0x00000002 EXL Exception level
0x00000004 ERL Error level
0x00000008 S Supervisor mode
0x00000010 U User mode
0x00000018 U Undefined (implemented as User mode)
0x00000000 K Kernel mode
0x00000020 UX User mode 64-bit addressing
0x00000040 SX Supervisor mode 64-bit addressing
0x00000080 KX Kernel mode 64-bit addressing
0x0000FF00 IM=i Interrupt Mask value is i
0x00010000 DE Disable cache parity/ECC
0x00020000 CE Reserved
0x00040000 CH Cache hit
0x00080000 NMI Non-maskable interrupt has occurred
0x00100000 SR Soft reset or NMI exception
0x00200000 TS TLB shutdown has occurred
0x00400000 BEV Bootstrap vectors
0x02000000 RE Reverse-Endian bit

TABLE 29: MIPS General (Integer) Registers (cont.)

Register Description Data Type Edit Dive
Specify in
Expression
Version 6.2 TotalView Reference Guide 269

10
Architectures

SGI MIPS
MIPS Floating-Point Registers

TotalView displays the MIPS floating-point registers in the Stack Frame Pane of the
Process Window. Here is a table that describes how TotalView treats each floating-
point register, and the actions you can take with each register.

0x04000000 FR Additional floating-point registers enabled
0x08000000 RP Reduced power mode
0x10000000 CU0 Coprocessor 0 usable
0x20000000 CU1 Coprocessor 1 usable
0x40000000 CU2 Coprocessor 2 usable
0x80000000 XX MIPS IV instructions usable

TABLE 31: MIPS Floating-Point Registers

Register Description Data Type Edit Dive
Specify in
Expression

F0, F2 Hold results of floating-point
type function; $f0 has the real
part, $f2 has the imaginary part

<double> yes yes $f0, $f2

F1 – F3,
F4 – F11

Temporary registers <double> yes yes $f1 – $f3,
$f4 – $f11

F12 – F19 Pass single- or double-
precision actual arguments

<double> yes yes $f12 –
$f19

F20 – F23 Temporary registers <double> yes yes $f20 –
$f23

F24 – F31 Saved registers <double> yes yes $f24 –
$f31

FCSR FPU control and status register <int> yes no $fcsr

TABLE 30: MIPS SR Register Bit Settings (cont.)

Value Bit Setting Meaning
270 TotalView Reference Guide Version 6.2

Architectures

SGI MIPS
MIPS FCSR Register

For your convenience, TotalView interprets the bit settings of the MIPS FCSR regis-
ter. You can edit the value of the FCSR and set it to any of the bit settings outlined
in the following table.

TABLE 32: MIPS FCSR Register Bit Settings

Value Bit Setting Meaning
RM=RN 0x00000000 Round to nearest
RM=RZ 0x00000001 Round toward zero
RM=RP 0x00000002 Round toward positive infinity
RM=RM 0x00000003 Round toward negative infinity
flags=(I) 0x00000004 Flag=inexact result
flags=(U) 0x00000008 Flag=underflow
flags=(O) 0x00000010 Flag=overflow
flags=(Z) 0x00000020 Flag=divide by zero
flags=(V) 0x00000040 Flag=invalid operation
enables=(I) 0x00000080 Enables=inexact result
enables=(U) 0x00000100 Enables=underflow
enables=(O) 0x00000200 Enables=overflow
enables=(Z) 0x00000400 Enables=divide by zero
enables=(V) 0x00000800 Enables=invalid operation
cause=(I) 0x00001000 Cause=inexact result
cause=(U) 0x00002000 Cause=underflow
cause=(O) 0x00004000 Cause=overflow
cause=(Z) 0x00008000 Cause=divide by zero
cause=(V) 0x00010000 Cause=invalid operation
cause=(E) 0x00020000 Cause=unimplemented
FCC=(0/c) 0x00800000 FCC=Floating-Point Condition Code 0;

c=Condition bit
FS 0x01000000 Flush to zero
FCC=(1) 0x02000000 FCC=Floating-Point Condition Code 1
FCC=(2) 0x04000000 FCC=Floating-Point Condition Code 2
FCC=(3) 0x08000000 FCC=Floating-Point Condition Code 3
FCC=(4) 0x10000000 FCC=Floating-Point Condition Code 4
FCC=(5) 0x20000000 FCC=Floating-Point Condition Code 5
Version 6.2 TotalView Reference Guide 271

10
Architectures

SGI MIPS
Using the MIPS FCSR Register
You can change the value of the MIPS FCSR register within TotalView to customize
the exception handling for your program.

For example, if your program inadvertently divides by zero, you can edit the bit set-
ting of the FCSR register in the Stack Frame Pane. In this case, you would change
the bit setting for the FCSR to include 0x400 (as shown in Table 31). The string dis-
played next to the FCSR register should now include enables=(Z). Now, when your
program divides by zero, it receives a SIGFPE signal, which you can catch with
TotalView. See “Setting Up a Debugging Session” in the TOTALVIEW USERS GUIDE for
more information.

MIPS Delay Slot Instructions

On the MIPS architecture, jump and branch instructions have a “delay slot”. This
means that the instruction after the jump or branch instruction is executed before
the jump or branch is executed.

In addition, there is a group of “branch likely” conditional branch instructions in
which the instruction in the delay slot is executed only if the branch is taken.

The MIPS processors execute the jump or branch instruction and the delay slot
instruction as an indivisible unit. If an exception occurs as a result of executing the
delay slot instruction, the branch or jump instruction is not executed, and the
exception appears to have been caused by the jump or branch instruction.

This behavior of the MIPS processors affects both the TotalView instruction step
command and TotalView breakpoints.

The TotalView instruction step command will step both the jump or branch instruc-
tion and the delay slot instruction as if they were a single instruction.

FCC=(6) 0x40000000 FCC=Floating-Point Condition Code 6
FCC=(7) 0x80000000 FCC=Floating-Point Condition Code 7

TABLE 32: MIPS FCSR Register Bit Settings (cont.)

Value Bit Setting Meaning
272 TotalView Reference Guide Version 6.2

Architectures

Sun SPARC
If a breakpoint is placed on a delay slot instruction, execution will stop at the jump
or branch preceding the delay slot instruction, and TotalView will not know that it is
at a breakpoint. At this point, attempting to continue the thread that hit the break-
point without first removing the breakpoint will cause the thread to hit the break-
point again without executing any instructions. Before continuing the thread, you
must remove the breakpoint. If you need to reestablish the breakpoint, you might
then use the instruction step command to execute just the delay slot instruction
and the branch.

A breakpoint placed on a delay slot instruction of a branch likely instruction will be
hit only if the branch is going to be taken.

Sun SPARC

This section has the following information:

g SPARC General Registers

g SPARC PSR Register

g SPARC Floating-Point Registers

g SPARC FPSR Register

g Using the SPARC FPSR Register

NOTE The SPARC processor supports the IEEE floating-point format.

SPARC General Registers

TotalView displays the SPARC general registers in the Stack Frame Pane of the Pro-
cess Window. The following table describes how TotalView treats each general regis-
ter, and the actions you can take with each register.

TABLE 33: SPARC General Registers

Register Description Data Type Edit Dive
Specify in
Expression

G0 Global zero register <int> no no $g0
G1 – G7 Global registers <int> yes yes $g1 – $g7
O0 – O5 Outgoing parameter registers <int> yes yes $o0 – $o5
SP Stack pointer <int> yes yes $sp
Version 6.2 TotalView Reference Guide 273

10
Architectures

Sun SPARC
SPARC PSR Register

For your convenience, TotalView interprets the bit settings of the SPARC PSR regis-
ter. You can edit the value of the PSR and set some of the bits outlined in the fol-
lowing table.

O7 Temporary register <int> yes yes $o7
L0 – L7 Local registers <int> yes yes $l0 – $l7
I0 – I5 Incoming parameter registers <int> yes yes $i0 – $i5
FP Frame pointer <int> yes yes $fp
I7 Return address <int> yes yes $i7
PSR Processor status register <int> yes no $psr
Y Y register <int> yes yes $y
WIM WIM register <int> no no
TBR TBR register <int> no no
PC Program counter <code>[] no yes $pc
nPC Next program counter <code>[] no yes $npc

TABLE 34: SPARC PSR Register Bit Settings

Value Bit Setting Meaning
ET 0x00000020 Traps enabled
PS 0x00000040 Previous supervisor
S 0x00000080 Supervisor mode
EF 0x00001000 Floating-point unit enabled
EC 0x00002000 Coprocessor enabled
C 0x00100000 Carry condition code
V 0x00200000 Overflow condition code
Z 0x00400000 Zero condition code
N 0x00800000 Negative condition code

TABLE 33: SPARC General Registers (cont.)

Register Description Data Type Edit Dive
Specify in
Expression
274 TotalView Reference Guide Version 6.2

Architectures

Sun SPARC
SPARC Floating-Point Registers

TotalView displays the SPARC floating-point registers in the Stack Frame Pane of the
Process Window. The next table describes how TotalView treats each floating-point
register, and the actions you can take with each register.

TotalView allows you to use these registers singly or in pairs, depending on how
they are used by your program. For example, if you use F1 by itself, its type is
<float>, but if you use the F0/F1 pair, its type is <double>.

SPARC FPSR Register

For your convenience, TotalView interprets the bit settings of the SPARC FPSR regis-
ter. You can edit the value of the FPSR and set it to any of the bit settings outlined
in the following table.

TABLE 35: SPARC Floating-Point Registers

Register Description Data Type Edit Dive
Specify in
Expression

F0, F1,
F0_F1

Floating-point registers (f
registers), used singly

<float> no yes $f0, $f1,
$f0_f1

F2 – F31 Floating-point registers (f
registers), used singly

<float> yes yes $f2– $f31

F0, F1,
F0_F1

Floating-point registers (f
registers), used as pairs

<double> no yes $f0, $f1,
$f0_f1

F0/F1 –
F30/F31

Floating-point registers (f
registers), used as pairs

<double> yes yes $2 –
$f30_f31

FPCR Floating-point control register <int> no no $fpcr
FPSR Floating-point status register <int> yes no $fpsr

TABLE 36: SPARC FPSR Register Bit Settings

Value Bit Setting Meaning
CEXC=NX 0x00000001 Current inexact exception
CEXC=DZ 0x00000002 Current divide by zero exception
CEXC=UF 0x00000004 Current underflow exception
CEXC=OF 0x00000008 Current overflow exception
CEXC=NV 0x00000010 Current invalid exception
AEXC=NX 0x00000020 Accrued inexact exception
Version 6.2 TotalView Reference Guide 275

10
Architectures

Sun SPARC
Using the SPARC FPSR Register
The SPARC processor does not catch floating-point errors by default. You can
change the value of the FPSR within TotalView to customize the exception handling
for your program.

For example, if your program inadvertently divides by zero, you can edit the bit set-
ting of the FPSR register in the Stack Frame Pane. In this case, you would change

AEXC=DZ 0x00000040 Accrued divide by zero exception
AEXC=UF 0x00000080 Accrued underflow exception
AEXC=OF 0x00000100 Accrued overflow exception
AEXC=NV 0x00000200 Accrued invalid exception
EQ 0x00000000 Floating-point condition =
LT 0x00000400 Floating-point condition <
GT 0x00000800 Floating-point condition >
UN 0x00000c00 Floating-point condition unordered
QNE 0x00002000 Queue not empty
NONE 0x00000000 Floating-point trap type None
IEEE 0x00004000 Floating-point trap type IEEE Exception
UFIN 0x00008000 Floating-point trap type Unfinished FPop
UIMP 0x0000c000 Floating-point trap type Unimplemented FPop
SEQE 0x00010000 Floating-point trap type Sequence Error
NS 0x00400000 Nonstandard floating-point FAST mode
TEM=NX 0x00800000 Trap enable mask – Inexact Trap Mask
TEM=DZ 0x01000000 Trap enable mask – Divide by Zero Trap Mask
TEM=UF 0x02000000 Trap enable mask – Underflow Trap Mask
TEM=OF 0x04000000 Trap enable mask – Overflow Trap Mask
TEM=NV 0x08000000 Trap enable mask – Invalid Operation Trap Mask
EXT 0x00000000 Extended rounding precision – Extended precision
SGL 0x10000000 Extended rounding precision – Single precision
DBL 0x20000000 Extended rounding precision – Double precision
NEAR 0x00000000 Rounding direction – Round to nearest (tie-even)
ZERO 0x40000000 Rounding direction – Round to 0
PINF 0x80000000 Rounding direction – Round to +Infinity
NINF 0xc0000000 Rounding direction – Round to –Infinity

TABLE 36: SPARC FPSR Register Bit Settings (cont.)

Value Bit Setting Meaning
276 TotalView Reference Guide Version 6.2

Architectures

Sun SPARC
the bit setting for the FPSR to include 0x01000000 (as shown in Table 35) so that
TotalView traps the “divide by zero” bit. The string displayed next to the FPSR regis-
ter should now include TEM=(DZ). Now, when your program divides by zero, it
receives a SIGFPE signal, which you can catch with TotalView. See “Handling Signals”
in Chapter 3 of the TOTALVIEW USERS GUIDE for more information. If you did not set
the bit for trapping divide by zero, the processor would ignore the error and set the
AEXC=(DZ) bit.
Version 6.2 TotalView Reference Guide 277

10
Architectures

Sun SPARC
278 TotalView Reference Guide Version 6.2

Index
Symbols
scoping separator character

31, 36, 68
$newval variable in watchpoints

113
$oldval variable in watchpoints

113
$stop built-in function 81
%B server launch replacement

character 219
%C server launch replacement

character 219
%D path name replacement char-

acter 219
%H hostname replacement char-

acter 219
%L host and port replacement

character 220
%N line number replacement

character 220
%P password replacement char-

acter 220
%S source file replacement char-

acter 220
%t1 file replacement character

220
%t2 file replacement character

220
%V verbosity setting replacement

character 221
.totalview/lib_cache subdirectory

39
.tvd files 152
/proc file system 238

= symbol for PC of current buried
stack frame 69

> symbol for PC 69
@ symbol for action point 69

A
–a option to totalview command

208
ac, see dactions command
acquiring processes 180
Action Point > Save All com-

mand 171
action point identifiers 23, 50
action points

default for newly created 165
deleting 45, 131, 141, 147,

156
disabling 23, 24, 47
displaying 23
enabling 23, 24
identifiers 23
information about 23
loading 23
loading automatically 211
loading saved information 24
reenabling 50
saving 23
saving information about 24
scope of what is stopped 166
sharing 165
stopping when reached 190

actionpoint command 131
actionpoint properties 131
actions, see dactions command

add verb, image command 144
adding group members 59
adding groups 58
address property 131
advancing by steps 100
after_checkpointing options 41
AIX

compiling on 227
linking C++ to dbfork library

233
linking to dbfork library 233
swap space 241

alias command 19
aliases

default 19
removing 128

Alpha
architecture 251
floating-point registers 253
FPCR register 253
general registers 252

append, see dlappend command
appending to CLI variable lists 67
architectures 167, 251

Alpha 251
HP PA-RISC 254
Intel-x86 262
MIPS 267
PowerPC 258
SPARC 273

arenas 54, 77
ARGS variable 89, 94, 161
ARGS_DEFAULT variable 89, 94,

161
Version 6.2 TotalView Reference Guide 279

Index

B

arguments
command line 94
default 161
for totalview command 207
for tvdsvr command 216

arrays
automatic dereferencing 168
number of elements dis-

played 168
arriving at barrier 32
as, see dassign command
ask on dlopen option 245
ask_on_dlopen option 247
ask_on_dlopen variable 168
assemble, displaying symbolical-

ly 180
assembler instructions, stepping

103
assign, see dassign command
assigning string values 26
assigning values 26
asynchronous execution 51
at, see dattach command
attach, see dattach command
attaching to parallel processes 28
attaching to processes 28
attaching, using PIDs 29
auto_array_cast_bounds variable

168
auto_array_cast_enabled vari-

able 168
auto_deref_in_all_c variable 168
auto_deref_in_all_fortran vari-

able 169
auto_deref_initial_c variable 169
auto_deref_initial_fortran vari-

able 170
auto_deref_nested_c variables

170
auto_deref_nested_fortran vari-

ables 170
auto_load_breakpoints variables

171
auto_save_breakpoints variables

171
automatic dereferencing of ar-

rays 168

automatically attaching to pro-
cesses 186

B
b, see dbreak command
ba, see dbarrier command
–background option 208
back-tick analogy 21
barrier breakpoint 33
barrier is satisfied 162, 172
barrier, see dbarrier command
BARRIER_STOP_ALL variable 31,

33, 161
barrier_stop_all variables 171
BARRIER_STOP_WHEN_DONE

variable 32, 162
barrier_stop_when_done vari-

ables 172
barriers 31, 33

arriving 32
creating 32
scope of what is stopped 161
what else is stopped 31

baud rate, specifying 217
baw, see dbarrier command
–bg option 208
–bkeepfile option 233
blocking command input 112
blocking input 112
break, see dbreak command
breakpoints

automatically loading 171
barrier 31
default file in which set 37
defined 37
popping Process Window 198
setting at functions 37
stopping all processes at 36
temporary 107
triggering 37

breakpoints file 24, 171
bt, see dbreak command
bulk launch 220
bulk_launch_base_timeout vari-

ables 172
bulk_launch_enabled variables

172

bulk_launch_incr_timeout vari-
ables 172

bulk_launch_string variables 173
bulk_launch_tmpfile1_header_

line variables 173
bulk_launch_tmpfile1_host_ lines

variables 173
bulk_launch_tmpfile1_trailer_

line variables 173
bulk_launch_tmpfile2_

header_line variables 173
bulk_launch_tmpfile2_host_ lines

variables 174
bulk_launch_tmpfile2_trailer_

line variables 174
buried stack frame 68

C
C language escape characters 26
C shell 239
C++

demangler 208
including libdbfork.h 233

C++ demangler 176
c_type_strings variables 174
cache, flushing 39
cache, see dcache command
call stack 110

displaying 121
call tree saved position 195
–callback option 215, 216
–callback_host 216
–callback_ports 216
callbacks 183

after loading a program 186
when opening the CLI 185

capture command 21, 125
case sensitive searching 187
Cast dereferenced C pointers to

array string checkbox 168
CGROUP variable 162
changing CLI variables 96
changing dynamic context 110
changing focus 54
changing value of program vari-

able 26, 41, 61, 65, 79, 91,
105, 107
280 TotalView Reference Guide Version 6.2

Index

C

chase_mouse variables 193
checkpoint, see dcheckpoint com-

mand
checkpointing

preserving IDs 41
process state 40
reattaching to parallel 40
restarting 91
scope 40
socket issue 41

CLI commands
action points 17
alias 19
aliases 161, 201
capture 21, 125
dactions 23
dassign 26
dattach 28
dbarrier 31
dbreak 36
dcache 39
dcheckpoint 40
dcont 43
ddelete 45
ddetach 46
ddisable 47
ddown 48
dec2hex 133
denable 50
dflush 51, 81
dfocus 54
dgo 57
dgroups 58
dhalt 64
dhold 65
dkill 66
dlappend 67
dlist 68
dlist command 165
dload 71
dmstat 73
dnext 75
dnexti 77
dout 79
dprint 81
dptsets 86
drerun 89

drestart 91
drun 66, 93
drun, reissuing 94
dset 96
dstatus 98
dstep 100
dstepi 103
dunhold 105
dunset 106
duntil 107
dup 110
dwait 112
dwatch 113
dwhat 117
dwhere 121
dworker 123
environment 15
executing immediately 210
execution control 17
exit 124
focus of 161, 201
help 125
initialization 16
overview 15, 129
program information 16
quit 126
responding to 150
stty 127
summary 3
termination 16
TV::actionpoint 131
TV::errorCodes 134
TV::expr 81, 136
TV::focus_groups 138
TV::focus_processes 139
TV::focus_threads 140
TV::group 141
TV::hex2dec 143
TV::image 144
TV::process 147
TV::respond 150
TV::source_process_startup

152
TV::thread 154
TV::type 156
unalias 128

CLI variables

ARGS 89, 94, 161
ARGS_DEFAULT 89, 94, 161
ask_on_dlopen 168
auto_array_cast_bounds 168
auto_array_cast_enabled 168
auto_deref_in_all_c 168
auto_deref_in_all_fortran 169
auto_deref_initial_fortran 170
auto_deref_intial_c 169
auto_deref_nested_c 170
auto_deref_nested_fortran

170
auto_load_breakpoints 171
auto_save_breakpoints 171
BARRIER_STOP_ALL 31, 33,

161
barrier_stop_all 171
BARRIER_STOP_WHEN_

DONE 32
BARRIER_STOP_WHEN_DON

E 162
barrier_stop_when_done 172
bulk_launch_base_timeout

172
bulk_launch_enabled 172
bulk_launch_incr_timeout

172
bulk_launch_string 173
bulk_launch_tmpfile1_header

_line 173
bulk_launch_tmpfile1_host_

lines 173
bulk_launch_tmpfile1_trailer_

line 173
bulk_launch_tmpfile2_header

_ line 173
bulk_launch_tmpfile2_host_

lines 174
bulk_launch_tmpfile2_trailer_

line 174
c_type_strings 174
CGROUP 162
changing 96
chase_mouse 193
comline_patch_area_base

174
Version 6.2 TotalView Reference Guide 281

Index

C

comline_path_area_length
174

COMMAND_EDITING 163
command_editing 174
compile_expressions 175
compiler_vars 175
copyright_string 176
current_cplus_demangler 176
current_fortran_demangler

176
data_format_double 177
data_format_ext 178
data_format_int16 179
data_format_int32 179
data_format_int64 179
data_format_int8 179
data_format_single 179
data_format_singlen 180
dbfork 180
default value for 96
deleting 96
display_assembler_symbolica

lly 180
display_font_dpi 193
dll_ignore_prefix 180
dll_stop_suffix 180
dpvm 181
dump_core 181
dynamic 181
editor_launch_string 181
enabled 193
errorCodes 81
EXECUTABLE_PATH 29, 69,

163
fixed_font 193
fixed_font_family 194
fixed_font_size 194
font 194
force_default_cplus_demangl

er 182
force_default_f9x_demangler

182
force_window_position 194
geometry_call_tree 195
geometry_cli 195
geometry_globals 195
geometry_help 195

geometry_memory_stats 196
geometry_message_queue

196
geometry_message_queue_gr

aph 196
geometry_modules 196
geometry_process 196
geometry_ptset 197
geometry_pvm 197
geometry_root 197
geometry_thread_objects

197
geometry_variable 197
geometry_variable_stats 198
global_typenames 182
GROUP 163
GROUPS 28, 71, 164
ignore_control_c 183
image_load_callbacks 183
in_setup 183
kcc_classes 183
keep_search_dialog 198
kernel_launch_string 184
library_cache_directory 184
LINES_PER_SCREEN 164
local_interface 184
local_server 184
local_server_launch_string

185
MAX_LIST 68, 165
message_queue 185
parallel 185
parallel_attach 186
parallel_stop 186
platform 186
pop_at_breakpoint 198
pop_on_error 198
process_load_callbacks 186
PROMPT 165
PTSET 165
pvm 187
save_window_pipe_or_filena

me 187
search_case_sensitive 187
server_launch_enabled 187
server_launch_string 187
server_launch_timeout 188

SGROUP 165
SHARE_ACTION_POINT 165
share_action_point 188
signal_handling_mode 188
single_click_dive_enabled

198
source_pane_tab_width 190
spell_correction 190
STOP_ALL 36, 115, 166
stop_all 190
stop_relatives_on_proc_error

190
suffix 191
TAB_WIDTH 69, 166
THREADS 166
TOTAL_VERSION 167
TOTALVIEW_ROOT_PATH

166
TOTALVIEW_TCLLIB_PATH

167
ttf 191
ui_font 198
ui_font_family 199
ui_font_size 199
user_threads 191
using_color 199
using_text_color 199
using_title_color 199
VERBOSE 167
version 191, 199
viewing 96
visualizer_launch_enabled

192
visualizer_launch_string 192
visualizer_max_rank 192
warn_step_throw 192
WGROUP 167
wrap_on_search 192

CLI, activated from GUI flag 193
clusterid property 147
co, see dcont command
code, displaying 68
color

foreground 210
comline_patch_area_base vari-

ables 174
282 TotalView Reference Guide Version 6.2

Index

D

comline_path_area_length vari-
ables 174

command aliases 161, 201
command arguments 161
command focus 54, 161, 201
command input, blocking 112
command line arguments 94
command output 21
command prompt 165
command summary 3
COMMAND_EDITING variable

163
command_editing variables 174
commands

totalview 207
tvdsvr

syntax and use 215
user-defined 19

commands verb
actionpoint command 131
expr command 136
group command 141
image command 144
process command 147
thread command 154
type command 156

commands, responding to 150
compile_expressions variables

175
–compiler_vars option 208
compiler_vars variables 175
compilers, KCC 183
compiling

debugging symbols 225
–g compiler option 225
on HP Tru64 UNIX 226
on HP-UX 227, 228
on IRIX 229
on SunOS 230
options 225

conditional watchpoints 113
connection directory 219
console output for tvdsvr 217
console output redirection 208
cont, see dcont command
continuation_sig property 154
control group variable 162

control group, stopping 190
control list element 163
copyright_string variables 176
core

dumping for TotalView 210
when needing to debug

TotalView itself 181
core files, loading 28
count property 141
creating a group 58, 60
creating barrier breakpoints 32
creating commands 19
creating new process objects 71
creating threads 57
Ctrl+C, ignoring 183
Ctrl+D to exit CLI 124, 126
current data size limit 240
current list location 48
current_cplus_demangler vari-

ables 176
current_fortran_demangler vari-

ables 176

D
d, see ddown command
d_process object 238
dactions command 23
dassign command 26
data format, presentation styles

177
data size 73
data size limit in C shell 239
data_format_double variables

177
data_format_ext variables 178
data_format_int16 variables 179
data_format_int32 variables 179
data_format_int64 variables 179
data_format_int8 variables 179
data_format_single variables 179
data_format_stringlen variables

180
data_size property 145
datatype incompatibilities 26
dattach command 28
dbarrier command 31
dbfork library

linking with 231
syntax 208

–dbfork option 208
dbfork variables 180
dbreak command 36
dcache command 39
dcheckpoint command 40

preserving IDs 41
process 40
reattaching to parallel 40
scope 40
socket issue 41

dcont command 43
ddelete command 45
ddetach command 46
ddisable command 47
ddown command 48
de, see ddelete command
deactivating action points 47
deadlocks at barriers 33
–debug_file option 208, 217
debugger server 187, 215
debugging remote systems 39
debugging session, ending 124
dec2hex command 133
default aliases 19
default arguments 94, 161

modifying 94
default focus 54
default value of variables, restor-

ing 106
defining the current focus 165
delay slot instructions for MIPS

272
delete verb, expr command 136
delete, see ddelete command
deleting action points 45, 131,

141, 147, 156
deleting cache 39
deleting CLI variables 96
deleting groups 58, 60
deleting variables 106
demangler

C++ 176
forcing use 182
Fortran 176
overriding 208, 210
Version 6.2 TotalView Reference Guide 283

Index

E

–demangler option 208
denable command 50
dereferencing

C pointers automatically 169
C structure pointers automat-

ically 170
Fortran pointers automatical-

ly 170
values automatically 168

dereferencing values automatical-
ly 169

det, see ddetach command
detach, see ddetach command
detaching from processes 46
dflush command 51, 81
dfocus command 54
dgo command 57
dgroups command 58

–add 59
–delete 60
–intersect 60
–list 60
–new 60
–remove 61

dhalt command 64
dhold command 65
di, see ddisable command
directory search paths 163
disable, see ddisable command
disabling action points 23, 24, 47
disabling PVM support 212
display call stack 121
–display option 209
display_assembler_ symbolically

variables 180
display_font_dpi variables 193
displaying

code 68
current execution location

121
error message information

167
help information 125
information on a name 117
lines 165
values 81

displaying expressions 81

diving, single click 198
dkill command 66
dlappend command 67
dlist command 68, 165
dlist, number of lines displayed

165
DLL Do Query on Load list 246
DLL Don’t Query on Load list 246
dll_ignore_prefix variables 180
dll_stop_suffix variables 180
dload command 71
dlopen 245

ask when loading 168
dmstat command 73
dnext command 75
dnexti command 77
done property 136
double-precision data format 177
dout command 79
down, see ddown command
dpid 162
dpid property 154
dpids property 145
dprint command 81
dptsets command 86
–dpvm option 209, 217
dpvm variables 181
drerun command 89
drestart command 91

attaching automatically 91
attaching to processes 91
process state 91

drun command 66, 93
poe issues 95
reissuing 94

dset command 96
dstatus command 98
dstep command 100

iterating over focus 100
dstepi command 103
duhtp, see dunhold command
duid property 147, 154
–dump_core option 210
dump_core variables 181
dunhold command 105
dunset command 106
duntil command 107

group operations 107
dup command 110
dwait command 112
dwatch command 113
dwhat command 117
dwhere command 121

levels 165
dworker command 123
dynamic library support limita-

tions 248
dynamic variables 181
dynamically loaded libraries 245

E
editor_launch_string variables

181
eliminating tab processing 69
en, see denable command
enable, see denable command
enabled property 131
enabled variables 193
enabling action points 23, 24, 50
enabling PVM support 212
ending debugging session 124
enum_values property 156
environment variables

LD_LIBRARY_PATH 232, 234,
235

error message information 167
ERROR state 167
errorCodes command 81, 134
errorCodes variable 134
errors, raising 134
escape characters 26
evaluating functions 81
evaluation points, see dbreak
evaluations, suspended, flushing

51
exception data on HP Tru64 231
exception subcodes 81
exception, warning when thrown

192
executable property 147
EXECUTABLE_PATH variable 29,

69, 163
executing as one instruction 77
executing as one statement 75
284 TotalView Reference Guide Version 6.2

Index

H

executing assembler instructions
103

executing source lines 100
execution

halting 64
resuming 43

execution location, displaying
121

execve() 231
calling 208
catching 180

exit command 124
expr command 81, 136
expression property 131, 136
expression system

AIX 249
Alpha 248
IRIX 249

expression values, printing 81
expressions, compiling 175
extensions for file names 191

F
f, see dfocus command
fatal errors 239
–fg option 210
file name extensions 191
files, libdbfork.h 233
fixed_font variables 193
fixed_font_family variables 194
fixed_font_size variables 194
floating point data format

double-precision 177
extended floating point 178
single-precision 179
SPARC 258

flush, see dflush command
flushing cache 39
flushing suspended evaluations

51
focus

see also dfocus command
commands 161, 201
default 54
defining 165

focus_groups command 138
focus_processes command 139

focus_threads command 140
focus_threads property 136
font variables 194
fonts 193

fixed 193, 194
ui 194, 198
ui font family 199
ui font size 199

force_default_cplus_ demangler
variables 182

force_default_f9x_ demangler
variables 182

force_window_position variables
194

–foreground option 210
fork() 231

calling 208
catching 180

Fortran demangler 176
functions

evaluating 81
setting breakpoints at 37

G
g, see dgo command
geometry_call_tree variables 195
geometry_cli position 195
geometry_cli variables 195
geometry_globals variables 195
geometry_help variables 195
geometry_memory_stats vari-

ables 196
geometry_message_queue vari-

ables 196
geometry_message_queue_

graph variables 196
geometry_modules variables 196
geometry_process variables 196
geometry_ptset variables 197
geometry_pvm variables 197
geometry_root variables 197
geometry_thread_objects vari-

ables 197
geometry_variable variables 197
geometry_variable_stats vari-

ables 198
get verb

actionpoint command 131
expr command 136
group command 141
image command 144
process command 147
thread command 154
type command 156

global_typenames variables 182
–global_types option 210
go, see dgo command
goal breakpoint 101
gr, see dgroups command
group command 141
group members, stopping flag

166
group of interest 101
GROUP variable 163
group width stepping behavior

101
groups

accessing properties 141
adding 58
adding members 59
creating 58, 60
deleting 58, 60
intersecting 58, 60
listing 58, 60
naming 59
placing processes in 29
removing 61
removing members 58
returning list of 138
setting properties 141

GROUPS variable 28, 71, 164
groups, see dgroups command

H
h, see dhalt command
halt, see dhalt command
halting execution 64
handling signals 213
handling user-level (M:N) thread

packages 191
heap size 73
heap_size property 147
held property 148, 154
help command 125
Version 6.2 TotalView Reference Guide 285

Index

I

help window position 195
hex2dec command 143
hexadecimal conversion 133
hold, see dhold command
holding processes 65
holding threads 32, 65
host ports 216
hostname

expansion 219
for tvdsvr 216
replacement 220

hostname property 148
HP Tru64 UNIX

/proc file system 238
linking to dbfork library 232
swap space 240

hp, see dhold command
HP-UX

architecture 254
shared libraries 245
swap space 240

ht, see dhold command
htp, see dhold command

I
I/O redirection 89, 93
id property 131, 137, 141, 145,

148, 154, 156
ignore_control_c variables 183
ignoring libraries by prefix 209
image browser window position

195
image command 144
image_id property 156
image_ids property 148
image_load_callbacks variables

183
images

getting properties 145
setting properties 145

in_setup variables 183
inet interface name 184
INFO state 167
information on a name 117
initialization file 128
initially_suspended_process

property 137

input, blocking 112
inserting working threads 123
instructions, stepping 103
integer (64-bit) data format 179
integer data format

32-bit 179
8-bit 179

integer data formats
16-bit 179

Intel-x86
architecture 262
floating-point registers 264
FPCR register 265

using 265
FPSR register 266
general registers 263

interface name for server 184
intersecting groups 58, 60
IRIX

/proc file system 238
linking to dbfork library 234
swap space 242

is_dll property 145

J
job_t::launch 238

K
k, see dkill command
–kcc_classes option 211
kcc_classes variables 183
keep_search_dialog variables 198
kernel_launch_string variables

184
keys, remapping 248
keysym 248
kill, see dkill command
killing processes 66

L
l, see dlist command
language property 131, 156
lappend, see dlappend command
launch string

for editor 181
for server (Sun only) 185
for Visualizer 192

Launch Strings page 192

launching
local server 184
processes 93
single process sever launch

string 187
tvdsvr 215
Visualizer 192

–lb option 211
length property 131, 156
levels for dwhere 165
levels, moving down 48
libdbfork.a 231
libdbfork.h file 233
libraries

dbfork 208
ignoring by prefix 209
loading by suffix 180
loading symbols from 181
not loading based on prefix

180
shared 243

library cache, flushing 39
library_cache_directory variables

184
line property 131
LINES_PER_SCREEN variable 164
linking to dbfork library 231

AIX 233
C++ and dbfork 233
HP Tru64 UNIX 232
IRIX 234
SunOS 5 235

Linux swap space 242
list location 48
list, see dlist command
listing groups 58, 60

using a regular expression 60
listing lines 165
lo, see dload command
load and loadbind 245
load, see dload command
loading

action points 23, 211
programs 71
symbols from shared libraries

181
tvd files 152
286 TotalView Reference Guide Version 6.2

Index

P

loading action point information
24

local_interface variables 184
local_server variables 184
local_server_launch_string vari-

ables 185
lockstep list element 163
lookup verb, image command

144
lookup_keys verb, image com-

mand 144

M
machine instructions, stepping

103
manager property 155
manager threads, running 100
mangler, overriding 208, 210
MAX_LIST variable 68, 165
maxdsiz_64 241
maximum data segment size 241
Maximum permissible rank field

192
member_type property 141
member_type_values property

141
members property 141
memory

data size 73
heap 73
stack 73
text size 73

memory statistics window posi-
tion 196

memory use 73
message queue graph window

position 196
message queue window position

196
message verbosity variable 167
–message_queue option 211
message_queue variables 185
MIPS

architecture 267
delay slot instructions 272
FCSR register 271

using 272

floating-point registers 270
general registers 268
SR register 269

mkswap command 242
modules window position 196
more processing 81
more prompt 125, 164
mounting /proc file system 238
–mqd option 211
multiprocess programs, attach-

ing to processes 29

N
n, see dnext command
name property 145, 156
name, information about 117
namespaces 96

TV:: 96
TV::GUI:: 97
using wildcards 96

naming the host 216
nested subroutines, stepping out

of 79
new groups 60
newval variable in watchpoints

113
next, see dnext command
nexti, see dnexti command
ni, see dnexti command
nil, see dnexti command
niw, see dnexti command
nl, see dnext command
–nlb option 211
–no_ask_on_dlopen option 247
–no_compiler_vars option 208
–no_dbfork option 208
–no_dpvm option 210
–no_dump_core option 210
–no_dynamic option 244
–no_global_types option 211
–no_kcc_classes option 211
–no_message_queue option 211
–no_mqd option 211
–no_parallel option 211
–no_pvm option 212
–no_user_threads option 214
nodeid property 148

nw, see dnext command

O
oldval variable in watchpoints

113
Open (or raise) process window

at breakpoint checkbox 198
Open process window on error

signal check box 198
options

tvdsvr
–callback 215
–serial 215
–server 215
–set_pw 216

–user_threads 214
ou, see dout command
oul, see dout command
out, see dout command
ouw, see dout command

P
p, see dprint command
p/t expressions 86
p/t set browser position 197
panes, width 190
–parallel option 211
parallel processes, attaching to

28
parallel runtime libraries 185
parallel variables 185
Parallel Virtual Machine 181, 187,

209
parallel_attach variables 186
parallel_stop variables 186
password checking 218
passwords 218

generated by tvdsvr 216
–patch_area_base option 211
–patch_area_length option 212
PATH environment variable

for tvdsvr 215
pc property 155
Plant in share group checkbox

166, 188
platform variables 186
pop_at_breakpoint variables 198
pop_on_error variables 198
Version 6.2 TotalView Reference Guide 287

Index

P

popping Process Window on error
variable 198

port 4142 218
port number 217

for tvdsvr 216
replacement 220
searching 217

–port option 217
ports on host 216
PowerPC

architecture 258
floating-point registers 260
FPSCR register 260

using the 262
FPSCR register, using 262
general registers 258
MSR register 259

preserving IDs in checkpoint 41
print, see dprint command
printing expression values 81
printing information about cur-

rent state 98
printing registers 83
printing slices 82
printing variable values 81
proc file system problems 238
Process > Startup command 57
process barrier breakpoint, see

barrier breakpoint
process command 147
process groups, see groups
process information, saving 41
process list element 163
process objects, creating new 71
process statistics 73
process width stepping behavior

100
process window position 196
process/thread sets

changing 54
process_load_callbacks variable

186
process_set checkpoint options

41
processes

attaching to 28, 71
automatically acquiring 180

automatically attaching to
186

current status 98
destroyed when exiting CLI

124, 126
detaching from 46
holding 65
killing 66
properties 147
releasing 105
releasing control 46
restarting 89, 93
returning list of 139
starting 89, 93
terminating 66

program control groups, placing
processes in 29

program stepping 100
program variable, changing value

26, 41, 61, 65, 79, 91, 105,
107

programs, loading 71
PROMPT variable 165
prompting when screen is full 81
properties

address 131
clusterid 147
continuation_sig 154
count 141
data_size 145
done 136
dpid 154
dpids 145
duid 147, 154
enabled 131
enum_values 156
executable 147
expression 131, 136
focus_threads 136
heap_size 147
held 148, 154
hostname 148
id 131, 137, 141, 145, 148,

154, 156
image_id 156
image_ids 148

initially_suspended_process
137

is_dll 145
language 131, 156
length 131, 156
line 131
manager 155
member_type 141
member_type_values 141
members 141
name 145, 156
nodeid 148
pc 155
prototype 157
rank 157
result 137
satisfaction_group 132
share 132
sp 155
stack_size 148
stack_vm_size 148
state 148, 155
state_values 148, 155
status 137
stop_when_done 132
stop_when_hit 132
struct_fields 157
syspid 148
systid 155
text_size 145, 149
threadcount 149
threads 149
type 141
type_transformations 145
type_values 132, 141
vm_size 149

properties verb
actionpoint command 131
expr command 136
group command 141
image command 145
process command 147
thread command 154
type command 156

prototype property 157
PTSET variable 165
ptsets, see dptsets
288 TotalView Reference Guide Version 6.2

Index

S

PVM 217
–pvm option 212, 217
pvm variables 187
pvm window position 197
pxdb command 245
pxdb64 command 245

Q
qualifying symbol names 68
quit command 126
quotation marks 26

R
–r option 212
r, see drun command
raising errors 134
rank property 157
reading action points file 23
reenabling action points 50
registers

Alpha FPCR 253
floating-point

Alpha 253
Intel-x86 264
MIPS 270
PowerPC 260
SPARC 275

general
Alpha 252
Intel-x86 263
MIPS 268
PowerPC 258
SPARC 273

Intel-x86 FPCR 265
using the 265

Intel-x86 FPSR 266
MIPS FCSR 271

using the 272
MIPS SR 269
Power FPSCR 260
Power MSR 259
PowerPC FPSCR 260

using 262
PowerPC FPSCR,

using 262
PowerPC MSR 259
printing 83
SPARC FPSR 275

SPARC FPSR, using 276
SPARC PSR 274

registers, using in evaluations 37
release 162
releasing control 46
releasing processes and threads

31, 105
remapping keys 248
remote debugging, tvdsvr com-

mand syntax 215
–remote option 212
remote systems

debugging 39
removing

aliases 128
group member 58
groups 61
variables 106
worker threads 123

remsh command 219
replacement characters 219
replacing tabs with spaces 166
rerun, see rerun command
respond 150
restart, see drestart command
restarting processes 89, 93
restoring variables to default val-

ues 106
result property 137
resuming execution 37, 43, 57, 66
returning error information 134
root path 166

of TotalView 166
Root Window position 197
routines, stepping out of 79
rr, see drerun command
rsh command, with tvdsvr 188
run, see drun command
running to an address 107

S
s, see dstep command
satisfaction set 32, 162, 172
satisfaction_group property 132
save_window_pipe_or_ filename

variables 187
saved position

Call Tree Window 195
CLI Window 195
Help Window 195
Image Browser Window 195
Memory Statistics Window

196
Message Queue Graph Win-

dow 196
Message Queue window 196
Modules Window 196
P/T Set Browser Window 197
Process Window 196
PVM Window 197
Root Window 197
Thread Objects Window 197
Variable Window 197

saving action point information
24

saving action points 23
saving process information 41
screen size 164
search dialog, remaining dis-

played 198
search paths 163
search_case_sensitive variables

187
–search_port option 217
searching

case sensitive 187
wrapping 192

serial line connection 217
–serial option 212, 215, 217
server launch command 219
–server option 215, 218
server_launch_enabled variables

187
server_launch_string variables

187
server_launch_timeout variables

188
servers, number of 220
set verb

actionpoint command 131
group command 141
image command 145
process command 147
thread command 154
Version 6.2 TotalView Reference Guide 289

Index

T

type command 156
set, see dset command
–set_pw option 216, 218
–set_pws option 218
setting lines between more

prompts 164
setting terminal properties 127
SGROUP variable 165
share groups

share group variable 165
share list element 164
share property 132
SHARE_ACTION_POINT variable

165
share_action_point variables 188
share_in_group flag 165
shared libraries 243

HP-UX 245
shared libraries, loading symbols

from 181
–shm option 213, 214
showing current status 98
showing Fortran compiler vari-

ables 175
si, see dstepi command
SIGINT 183
–signal_handling_mode option

213
signal_handling_mode variable

188
–signal_handling_mode option

213
signals, handling in TotalView 213
sil, see dstepi command
SILENT state 167
single process server launch 187
single_click_dive_enabled vari-

ables 198
siw, see dstepi command
sl, see dstep command
slices, printing 82
source code, displaying 68
source_pane_tab_width vari-

ables 190
source_process_startup com-

mand 152
sourcing tvd files 152

sp property 155
SPARC

architecture 273
floating-point format 258
floating-point registers 275
FPSR register 275

using 276
general registers 273
PSR register 274

spell_correction variable 190
st, see dstatus command
stack frame 68

moving down through 48
stack memory 73
stack movements 110
stack, unwinding 51
stack_size property 148
stack_vm_size property 148
starting a process 89, 93
Startup command 57
start-up file, tvdinit.tvd 19
state property 148, 155
state_values property 148, 155
status property 137
status, see dstatus command
stderr redirection 89, 93
stdin redirection 89, 93
stdout redirection 89, 93
step, see dstep command
stepi, see dstepi command
stepping

group width behavior 101
machine instructions 77, 103
process width behavior 100
see also dnext command, dn-

exti command, dstep
command, and dstepi
command

thread width behavior 100
warning when exception

thrown 192
stop group breakpoint 37
STOP_ALL variable 36, 115, 161,

166
stop_all variable 190
stop_group flag 166

stop_relatives_on_proc_ error
variables 190

–stop_when_done command-line
option 162

stop_when_done property 132
stop_when_hit property 132
stopped process, responding to

resume commands 32
stopping execution 64
stopping group members flag 166
stopping the control group 190
string length format 180
strings, assigning values to 26
struct_fields property 157
structure definitions in KCC 183
stty command 127
suffixes variable 191
SunOS 5

/proc file system 238
key remapping 248
linking to dbfork library 235
swap space 242

sw, see dstep command
swap command 242
swap space 239, 242

AIX 241
HP Tru64 240
HP-UX 240
IRIX 242
Linux 242
SunOS 242

swapon command 242
symbol name qualification 68
symbols, interpreting 26
syspid property 148
system variables, see CLI variables
systid property 155

T
tab processing 69
TAB_WIDTH variable 69, 166
tabs, replacing with spaces 166
target processes 64

terminating 66
target property 157
terminal properties, setting 127
290 TotalView Reference Guide Version 6.2

Index

V

terminating debugging session
124

terminating processes 66
text size 73
text_size property 145, 149
thread barrier breakpoint, see bar-

rier breakpoint
thread command 154
thread groups, see groups
thread list element 164
thread objects window position

197
thread of interest 100, 107
thread width stepping behavior

100
threadcount property 149
threads

barriers 33
creating 57
current status 98
destroyed when exiting CLI

124, 126
getting properties 154
holding 32, 65
list variable 166
releasing 105
returning list of 140
setting properties 154

threads property 149
THREADS variable 166
totalview command 207

description 207
options 207
synopsis 207
syntax and use 207

TotalView Debugger Server 28, 41
TotalView executable 166
TotalView GUI version 199
TotalView version 191
totalview/lib_cache subdirectory

39
TOTALVIEW_ROOT_PATH vari-

able 166
TOTALVIEW_TCLLIB_PATH vari-

able 167
TOTALVIEW_VERSION variable

167

triggering breakpoints 37
troubleshooting xiv
ttf variable 191
TV:: namespace 96
TV::actionpoint command 131
TV::errorCodes command 134
TV::expr command 81, 136
TV::focus_groups command 138
TV::focus_processes command

139
TV::focus_threads command 140
TV::group command 141
TV::GUI:: namespace 97
TV::hex2dec command 143
TV::image command 144
TV::process command 147
TV::respond command 150
TV::source_process_startup com-

mand 152
TV::thread command 154
TV::type command 156
tvd files 152
TVD.breakpoints file 24, 171
tvdinit.tvd start-up file 19, 128
tvdsvr command 215, 216, 219

description 215
options 216
password 216
PATH environment variable

215
synopsis 215
use with DPVM applications

217
use with PVM applications

217
tvdsvr.conf 218
TVDSVRLAUNCHCMD environ-

ment variable 219
type command 156
type names 182
type property 132, 141, 157
type transformation variable 191
type_transformations

applied to image 145
type_transformations property

145

type_values property 132, 141,
157

U
u, see dup command
uhp, see dunhold command
uht, see dunhold command
ui_font variables 198
ui_font_family variables 199
ui_font_size variables 199
un, see duntil command
unalias command 128
unconditional watchpoints 113
unhold, see dunhold command
unl, see duntil command
unset, see dunset command
until, see duntil command
unw, see duntil command
unwinding the stack 51
up, see dup command
–user_threads option 214
user_threads variables 191
user-defined commands 19
user-level (M:N) thread packages

191
using quotation marks 26
using_color variables 199
using_text_color variables 199
using_title_color variables 199

V
value for newly created action

points 165
values, printing 81
Variable Window position 197
variables

assigning command output to
21

changing values 26, 41, 61,
65, 79, 91, 105, 107

default value for 96
printing 81
removing 106
watched 114
watching 113

VERBOSE variable 167
–verbosity option 214, 219
Version 6.2 TotalView Reference Guide 291

Index

W

verbosity setting replacement
character 221

version variables 191, 199
version, TotalView 167
vfork()

calling 208
catching 180

viewing CLI variables 96
visualizer_launch_enabled vari-

ables 192
visualizer_launch_string vari-

ables 192
visualizer_max_rank variables 192
vm_size property 149

W
w, see dwhere command
wa, see dwatch command
wait, see dwait command
warn_step_throw variables 192
WARNING state 167
watch, see dwatch command
watchpoints 113

$newval 113
$oldval 113
conditional 113
information not saved 24
length of 114
supported systems 114

WGROUP variable 167
wh, see dwhat command

what, see dwhat command
When barrier done, stop value

162
When barrier hit, stop value 161
where, see dwhere command
window position, forcing 194
worker group list variable 167
worker threads 167

inserting 123
removing 123

worker, see dworker command
workers list element 164
–working_directory option 219
wot, see dworker command
wrap_on_search variables 192
292 TotalView Reference Guide Version 6.2

	Book Overview
	Contents
	About This Book
	How To Use This Book
	Conventions
	TotalView Documentation
	Contacting Us

	CLI Command Summary
	CLI Commands
	Command Overview
	alias
	capture
	dactions
	dassign
	dattach
	dbarrier
	dbreak
	dcache
	dcheckpoint
	dcont
	ddelete
	ddetach
	ddisable
	ddown
	denable
	dflush
	dfocus
	dgo
	dgroups
	dhalt
	dhold
	dkill
	dlappend
	dlist
	dload
	dmstat
	dnext
	dnexti
	dout
	dprint
	dptsets
	drerun
	drestart
	drun
	dset
	dstatus
	dstep
	dstepi
	dunhold
	dunset
	duntil
	dup
	dwait
	dwatch
	dwhat
	dwhere
	dworker
	exit
	help
	quit
	stty
	unalias

	CLI Namespace Commands
	Command Overview
	actionpoint
	dec2hex
	errorCodes
	expr
	focus_groups
	focus_processes
	focus_threads
	group
	hex2dec
	image
	process
	respond
	scope
	source_process_startup
	symbol
	thread
	type
	type_transformation

	TotalView Variables
	Top-Level (::) Namespace
	TV:: Namespace
	TV::GUI:: Namespace

	Default Arena Widths
	TotalView Command Syntax
	Syntax
	Options

	TotalView Debugger Server (tvdsvr) Command Syntax
	The tvdsvr Command and Its Options
	Replacement Characters

	Compilers and Platforms
	Compiling with Debugging Symbols
	HP Alpha Running Linux
	HP Tru64 UNIX
	HP-UX
	IBM AIX on RS/6000 Systems
	Linux Running on an x86 Platform
	SGI IRIX-MIPS Systems
	SunOS 5 on SPARC

	Using Exception Data on HP Tru64 UNIX
	Linking with the dbfork Library
	Linking with dbfork and HP Tru64 UNIX
	Linking with HP-UX
	dbfork on IBM AIX on RS/6000 Systems
	Linking C++ Programs with dbfork

	Linux
	SGI IRIX6-MIPS
	SunOS 5 SPARC

	Operating Systems
	Supported Operating Systems
	Mounting the /proc File System
	Mounting /proc HP Tru64 UNIX and SunOS 5
	Mounting proc SGI IRIX

	Swap Space
	Swap Space on HP Tru64 UNIX
	Swap Space on HP HP-UX
	Maximum Data Size

	Swap Space on IBM AIX
	Swap Space on Linux
	Swap Space on SGI IRIX
	Swap Space on SunOS 5

	Shared Libraries
	Changing Linkage Table Entries and LD_BIND_NOW
	Using Shared Libraries on HP-UX

	Debugging Dynamically Loaded Libraries
	Known Limitations

	Remapping Keys
	Expression System
	Expression System on HP Alpha Tru64 UNIX
	Expression System on IBM AIX
	Expression System on SGI IRIX

	Architectures
	HP Alpha
	Alpha General Registers
	Alpha Floating-Point Registers
	Alpha FPCR Register

	HP PA-RISC
	PA-RISC General Registers
	PA-RISC Process Status Word
	PA-RISC Floating-Point Registers
	PA-RISC Floating-Point Format

	IBM Power
	Power General Registers
	Power MSR Register
	Power Floating-Point Registers
	Power FPSCR Register
	Using the Power FPSCR Register

	Intel-x86
	Intel-x86 General Registers
	Intel-x86 Floating-Point Registers
	Intel-x86 FPCR Register
	Using the Intel-x86 FPCR Register

	Intel-x86 FPSR Register
	Intel-x86 MXSCR Register

	SGI MIPS
	MIPS General Registers
	MIPS SR Register
	MIPS Floating-Point Registers
	MIPS FCSR Register
	Using the MIPS FCSR Register

	MIPS Delay Slot Instructions

	Sun SPARC
	SPARC General Registers
	SPARC PSR Register
	SPARC Floating-Point Registers
	SPARC FPSR Register
	Using the SPARC FPSR Register

	Index

